Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 58(3): 1636-1647, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38186056

ABSTRACT

Mine dust has been linked to the development of pneumoconiotic diseases such as silicosis and coal workers' pneumoconiosis. Currently, it is understood that the physicochemical and mineralogical characteristics drive the toxic nature of dust particles; however, it remains unclear which parameter(s) account for the differential toxicity of coal dust. This study aims to address this issue by demonstrating the use of the partial least squares regression (PLSR) machine learning approach to compare the influence of D50 sub 10 µm coal particle characteristics against markers of cellular damage. The resulting analysis of 72 particle characteristics against cytotoxicity and lipid peroxidation reflects the power of PLSR as a tool to elucidate complex particle-cell relationships. By comparing the relative influence of each characteristic within the model, the results reflect that physical characteristics such as shape and particle roughness may have a greater impact on cytotoxicity and lipid peroxidation than composition-based parameters. These results present the first multivariate assessment of a broad-spectrum data set of coal dust characteristics using latent structures to assess the relative influence of particle characteristics on cellular damage.


Subject(s)
Coal Mining , Occupational Exposure , Pneumoconiosis , Humans , Coal/analysis , Dust/analysis , Minerals
SELECTION OF CITATIONS
SEARCH DETAIL