Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Bacteriol ; 201(23)2019 12 01.
Article in English | MEDLINE | ID: mdl-31527114

ABSTRACT

Pseudomonas aeruginosa has a broad metabolic repertoire that facilitates its coexistence with different microbes. Many microbes secrete products that P. aeruginosa can then catabolize, including ethanol, a common fermentation product. Here, we show that under oxygen-limiting conditions P. aeruginosa utilizes AdhA, an NAD-linked alcohol dehydrogenase, as a previously undescribed means for ethanol catabolism. In a rich medium containing ethanol, AdhA, but not the previously described PQQ-linked alcohol dehydrogenase, ExaA, oxidizes ethanol and leads to the accumulation of acetate in culture supernatants. AdhA-dependent acetate accumulation and the accompanying decrease in pH promote P. aeruginosa survival in LB-grown stationary-phase cultures. The transcription of adhA is elevated by hypoxia and under anoxic conditions, and we show that it is regulated by the Anr transcription factor. We have shown that lasR mutants, which lack an important quorum sensing regulator, have higher levels of Anr-regulated transcripts under low-oxygen conditions than their wild-type counterparts. Here, we show that a lasR mutant, when grown with ethanol, has an even larger decrease in pH than the wild type (WT) that is dependent on both anr and adhA The large increase in AdhA activity is similar to that of a strain expressing a hyperactive Anr-D149A variant. Ethanol catabolism in P. aeruginosa by AdhA supports growth on ethanol as a sole carbon source and electron donor in oxygen-limited settings and in cells growing by denitrification under anoxic conditions. This is the first demonstration of a physiological role for AdhA in ethanol oxidation in P. aeruginosaIMPORTANCE Ethanol is a common product of microbial fermentation, and the Pseudomonas aeruginosa response to and utilization of ethanol are relevant to our understanding of its role in microbial communities. Here, we report that the putative alcohol dehydrogenase AdhA is responsible for ethanol catabolism and acetate accumulation under low-oxygen conditions and that it is regulated by Anr.


Subject(s)
Alcohol Dehydrogenase/metabolism , Ethanol/metabolism , Gene Expression Regulation, Bacterial , Oxygen/pharmacology , Pseudomonas aeruginosa/drug effects , Acetic Acid/metabolism , Alcohol Dehydrogenase/genetics , Anaerobiosis/genetics , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Hydrogen-Ion Concentration , Microbial Viability/drug effects , Mutation , Oxidation-Reduction , Pseudomonas aeruginosa/enzymology , Pseudomonas aeruginosa/genetics , Quorum Sensing/genetics , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription, Genetic
2.
mSphere ; 3(4)2018 08 08.
Article in English | MEDLINE | ID: mdl-30089648

ABSTRACT

Here, we report an approach to detect diverse bacterial and fungal taxa in complex samples by direct analysis of community RNA in one step using NanoString probe sets. We designed rRNA-targeting probe sets to detect 42 bacterial and fungal genera or species common in cystic fibrosis (CF) sputum and demonstrated the taxon specificity of these probes, as well as a linear response over more than 3 logs of input RNA. Culture-based analyses correlated qualitatively with relative abundance data on bacterial and fungal taxa obtained by NanoString, and the analysis of serial samples demonstrated the use of this method to simultaneously detect bacteria and fungi and to detect microbes at low abundance without an amplification step. Compared at the genus level, the relative abundances of bacterial taxa detected by analysis of RNA correlated with the relative abundances of the same taxa as measured by sequencing of the V4V5 region of the 16S rRNA gene amplified from community DNA from the same sample. We propose that this method may complement other methods designed to understand dynamic microbial communities, may provide information on bacteria and fungi in the same sample with a single assay, and with further development, may provide quick and easily interpreted diagnostic information on diverse bacteria and fungi at the genus or species level.IMPORTANCE Here we demonstrate the use of an RNA-based analysis of specific taxa of interest, including bacteria and fungi, within microbial communities. This multiplex method may be useful as a means to identify samples with specific combinations of taxa and to gain information on how specific populations vary over time and space or in response to perturbation. A rapid means to measure bacterial and fungal populations may aid in the study of host response to changes in microbial communities.


Subject(s)
Bacteria/classification , Biota , Cystic Fibrosis/microbiology , Fungi/classification , RNA, Bacterial/genetics , RNA, Fungal/genetics , Sputum/microbiology , Bacteria/genetics , Bacteria/isolation & purification , Fungi/genetics , Fungi/isolation & purification , Humans , Oligonucleotide Probes/genetics , RNA, Bacterial/analysis , RNA, Fungal/analysis , RNA, Ribosomal/analysis , RNA, Ribosomal/genetics , Sequence Analysis, DNA
3.
mBio ; 4(1): e00526-12, 2013 Jan 29.
Article in English | MEDLINE | ID: mdl-23362320

ABSTRACT

Candida albicans has developmental programs that govern transitions between yeast and filamentous morphologies and between unattached and biofilm lifestyles. Here, we report that filamentation, intercellular adherence, and biofilm development were inhibited during interactions between Candida albicans and Pseudomonas aeruginosa through the action of P. aeruginosa-produced phenazines. While phenazines are toxic to C. albicans at millimolar concentrations, we found that lower concentrations of any of three different phenazines (pyocyanin, phenazine methosulfate, and phenazine-1-carboxylate) allowed growth but affected the development of C. albicans wrinkled colony biofilms and inhibited the fungal yeast-to-filament transition. Phenazines impaired C. albicans growth on nonfermentable carbon sources and led to increased production of fermentation products (ethanol, glycerol, and acetate) in glucose-containing medium, leading us to propose that phenazines specifically inhibited respiration. Methylene blue, another inhibitor of respiration, also prevented the formation of structured colony biofilms. The inhibition of filamentation and colony wrinkling was not solely due to lowered extracellular pH induced by fermentation. Compared to smooth, unstructured colonies, wrinkled colony biofilms had higher oxygen concentrations within the colony, and wrinkled regions of these colonies had higher levels of respiration. Together, our data suggest that the structure of the fungal biofilm promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by bacterial molecules such as phenazines or compounds with similar activities disrupts these pathways. These findings may suggest new ways to limit fungal biofilms in the context of disease. IMPORTANCE Many of the infections caused by Candida albicans, a major human opportunistic fungal pathogen, involve both morphological transitions and the formation of surface-associated biofilms. Through the study of C. albicans interactions with the bacterium Pseudomonas aeruginosa, which often coinfects with C. albicans, we have found that P. aeruginosa-produced phenazines modulate C. albicans metabolism and, through these metabolic effects, impact cellular morphology, cell-cell interactions, and biofilm formation. We suggest that the structure of C. albicans biofilms promotes access to oxygen and enhances respiratory metabolism and that the perturbation of respiration by phenazines inhibits biofilm development. Our findings not only provide insight into interactions between these species but also provide valuable insights into novel pathways that could lead to the development of new therapies to treat C. albicans infections.


Subject(s)
Antifungal Agents/pharmacology , Biofilms/drug effects , Candida albicans/drug effects , Phenazines/pharmacology , Pseudomonas aeruginosa/chemistry , Antifungal Agents/isolation & purification , Biofilms/growth & development , Candida albicans/physiology , Culture Media/chemistry , Electron Transport/drug effects , Metabolic Networks and Pathways/drug effects , Microbial Interactions , Phenazines/isolation & purification , Pseudomonas aeruginosa/physiology
4.
Mol Microbiol ; 78(6): 1379-92, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21143312

ABSTRACT

Pseudomonas aeruginosa produces several phenazines including the recently described 5-methyl-phenazine-1-carboxylic acid (5MPCA), which exhibits a novel antibiotic activity towards pathogenic fungi such as Candida albicans. Here we characterize the unique antifungal mechanisms of 5MPCA using its analogue phenazine methosulphate (PMS). Like 5MPCA, PMS induced fungal red pigmentation and killing. Mass spectrometry analyses demonstrated that PMS can be covalently modified by amino acids, a process that yields red derivatives. Furthermore, soluble proteins from C. albicans grown with either PMS or P. aeruginosa were also red and demonstrated absorbance and fluorescence spectra similar to that of PMS covalently linked to either amino acids or proteins in vitro, suggesting that 5MPCA modification by protein amine groups occurs in vivo. The red-pigmented C. albicans soluble proteins were reduced by NADH and spontaneously oxidized by oxygen, a reaction that likely generates reactive oxygen species (ROS). Additional evidence indicated that ROS generation precedes 5MPCA-induced fungal death. Reducing conditions greatly enhanced PMS uptake by C. albicans and killing. Since 5MPCA was more toxic than other phenazines that are not modified, such as pyocyanin, we propose that the covalent binding of 5MPCA promotes its accumulation in target cells and contributes to its antifungal activity in mixed-species biofilms.


Subject(s)
Antifungal Agents/metabolism , Bacterial Toxins/metabolism , Biofilms , Candida albicans/physiology , Methylphenazonium Methosulfate/metabolism , Pseudomonas aeruginosa/metabolism , Antifungal Agents/pharmacology , Bacterial Toxins/pharmacology , Candida albicans/drug effects , Candida albicans/genetics , Fungal Proteins/genetics , Fungal Proteins/metabolism , Methylphenazonium Methosulfate/pharmacology , Microbial Viability , Molecular Structure , Oxidation-Reduction , Reactive Oxygen Species/metabolism
5.
Hepatology ; 46(6): 1927-834, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17854053

ABSTRACT

UNLABELLED: Porphyria cutanea tarda is a liver disease characterized by elevated hepatic iron and excessive production of uroporphyrin (URO). Phlebotomy is an effective treatment that probably acts by reducing hepatic iron. Here we used Hfe(-/-) mice to compare the effects on hepatic URO accumulation of two different methods of hepatic iron depletion: iron chelation using deferiprone (L1) versus iron-deficient diets. Hfe(-/-) mice in a 129S6/SvEvTac background were fed 5-aminolevulinic acid (ALA), which results in hepatic URO accumulation, and increasing doses of L1 in the drinking water. Hepatic URO accumulation was completely prevented at low L1 doses, which partially depleted hepatic nonheme iron. By histological assessment, the decrease in hepatic URO accumulation was associated with greater depletion of iron from hepatocytes than from Kupffer cells. The L1 treatment had no effect on levels of hepatic cytochrome P4501A2 (CYP1A2). L1 also effectively decreased hepatic URO accumulation in C57BL/6 Hfe(-/-) mice treated with ALA and a CYP1A2 inducer. ALA-treated mice maintained on defined iron-deficient diets, rather than chow diets, did not develop uroporphyria, even when the animals were iron-supplemented either directly in the diet or by iron dextran injection. CONCLUSION: The results suggest that dietary factors other than iron are involved in the development of uroporphyria and that a modest depletion of hepatocyte iron by L1 is sufficient to prevent URO accumulation.


Subject(s)
Iron Chelating Agents/therapeutic use , Iron Deficiencies , Porphyria Cutanea Tarda/diet therapy , Porphyria Cutanea Tarda/drug therapy , Pyridones/therapeutic use , Animals , Deferiprone , Disease Models, Animal , Liver/chemistry , Male , Mice , Uroporphyrins/analysis
6.
Hepatology ; 45(1): 187-94, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17187429

ABSTRACT

UNLABELLED: Excess hepatic iron is known to enhance both porphyria cutanea tarda (PCT) and experimental uroporphyria. Since previous studies have suggested a role for ascorbate (AA) in suppressing uroporphyria in AA-requiring rats (in the absence of excess iron), the present study investigated whether AA could suppress uroporphyria produced by excess hepatic iron. Hepatic URO accumulation was produced in AA-requiring Gulo(-/-) mice by treatment with 3,3',4,4',5-pentachlorbiphenyl, an inducer of CYP1A2, and 5-aminolevulinic acid. Mice were administered either sufficient AA (1000 ppm) in the drinking water to maintain near normal hepatic AA levels or a lower intake (75 ppm) that resulted in 70 % lower hepatic AA levels. The higher AA intake suppressed hepatic URO accumulation in the absence of administered iron, but not when iron dextran (300-500 mg Fe/kg) was administered. This effect of iron was not due to hepatic AA depletion since hepatic AA content was not decreased. The effect of iron to prevent AA suppression of hepatic URO accumulation was not observed until a high hepatic iron threshold was exceeded. At both low and high AA intakes, hepatic malondialdehyde (MDA), an indicator of oxidative stress, was increased three-fold by high doses of iron dextran. MDA was considerably increased even at low iron dextran doses, but without any increase in URO accumulation. The level of hepatic CYP1A2 was unaffected by either AA intake. CONCLUSION: In this mouse model of PCT, AA suppresses hepatic URO accumulation at low, but not high hepatic iron levels. These results may have implications for the management of PCT.


Subject(s)
Ascorbic Acid Deficiency/metabolism , Ascorbic Acid/pharmacology , Iron/pharmacology , Porphyria Cutanea Tarda/metabolism , Uroporphyrins/metabolism , Aminolevulinic Acid , Animals , Ascorbic Acid/genetics , Ascorbic Acid/metabolism , Ascorbic Acid Deficiency/genetics , Cytochrome P-450 CYP1A2/genetics , Cytochrome P-450 CYP1A2/metabolism , Dietary Supplements , Disease Models, Animal , Dose-Response Relationship, Drug , Iron/metabolism , Iron-Dextran Complex/pharmacology , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidative Stress/drug effects , Polychlorinated Biphenyls , Porphyria Cutanea Tarda/chemically induced , Porphyria Cutanea Tarda/drug therapy
7.
Arch Biochem Biophys ; 439(1): 1-11, 2005 Jul 01.
Article in English | MEDLINE | ID: mdl-15946643

ABSTRACT

Primary cultures of chick embryo hepatocytes have been used to study the mechanisms by which various drugs and other chemicals cause accumulation of porphyrin intermediates of the heme pathway. When these cultures are incubated with the heme precursor, 5-aminolevulinic acid (ALA), there is a major accumulation of protoporphyrin. However, in the presence of ALA, addition of insulin caused a striking increase in accumulation of uroporphyrin I and coproporphyrin III, whereas addition of glucagon mainly caused an increase in uroporphyrin I. Treatment with both insulin and glucagon resulted in additive increases in uroporphyrin, but not coproporphyrin. Antioxidants abolished the uroporphyrin I accumulation and increased coproporphyrin III. Insulin caused an increase in uptake of ALA and an increase in porphobilinogen accumulation, suggesting that the accumulation of uroporphyrin I is due to increased flux through the heme pathway. Apparently, this increased flux could particularly affect the utilization of the intermediate hydroxymethylbilane, which would result in accumulation of uroporphyrin I.


Subject(s)
Aminolevulinic Acid/metabolism , Coproporphyrins/biosynthesis , Gastrointestinal Agents/pharmacology , Glucagon/pharmacology , Hepatocytes/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Uroporphyrins/biosynthesis , Aminolevulinic Acid/pharmacology , Animals , Cells, Cultured , Chick Embryo , Hepatocytes/drug effects , Photosensitizing Agents/pharmacology
8.
Hepatology ; 40(4): 942-50, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15382179

ABSTRACT

Two major risk factors for porphyria cutanea tarda (PCT) are alcohol consumption and homozygosity for the C282Y mutation in the hereditary hemochromatosis gene (HFE). We recently described an animal model for alcohol-induced uroporphyria, using Hfe(-/-) mice. In the present study we show that this effect is dependent on genetic background and ethanol dose. In the 129S6/SvEvTac (129) strain, treatment with 15% ethanol in the drinking water for 6.5 months produced an accumulation of hepatic uroporphyrin (URO) 4-fold higher than that observed with 10% ethanol, a 90% decrease in uroporphyrinogen decarboxylase activity (UROD), and further increased the activities of hepatic 5-aminolevulinate synthase (ALAS) and CYP1A2. Hepatic nonheme iron (NHFe) and hepatocyte iron staining were not further increased by 15% compared to 10% ethanol. Treatment of C57BL/6 Hfe(-/-) mice with 15% ethanol for 6.5 months did not increase hepatic URO. Although NHFe was increased by ethanol, the resulting level was only half that of ethanol-treated 129 Hfe(-/-) mice. ALAS induction was similar in both Hfe(-/-) strains. In wild-type 129 mice treated with ethanol for 6 to 7 months, administration of iron dextran increased hepatic URO accumulation and decreased UROD activity. In conclusion, this study demonstrates a strong effect of genetic background on ethanol-induced uroporphyria, which is probably due to a greater effect of ethanol on iron metabolism in the susceptible strain.


Subject(s)
Alcohol Drinking/genetics , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Histocompatibility Antigens Class I/genetics , Membrane Proteins/genetics , Porphyria Cutanea Tarda/genetics , 5-Aminolevulinate Synthetase/metabolism , Alcohol Drinking/metabolism , Animals , Cytochrome P-450 CYP1A2/metabolism , Hemochromatosis Protein , Iron/metabolism , Iron-Dextran Complex/pharmacology , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Porphyria Cutanea Tarda/etiology , Porphyria Cutanea Tarda/metabolism , Uroporphyrins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL