Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Language
Publication year range
1.
Rev. biol. trop ; Rev. biol. trop;68(supl 2)set. 2020.
Article in English | LILACS, SaludCR | ID: biblio-1507631

ABSTRACT

Introduction: Glacierised catchments are remote and hostile environments, in which streams from different water sources (e.g., glacier melt, rain/snowmelt, groundwater) converge, creating a complex mosaic of stream sites with varying levels of glacial influence and environmental conditions. This environmental heterogeneity, in turn, influences the assemblage and composition of aquatic communities and produces complex patterns of species diversity at the catchment scale. Objectives: In this contribution, we assessed biodiversity and community composition of aquatic macroinvertebrate communities from 51 stream site types in a glacierised catchment in the tropical Andes. The aim of our study was to: (1) determine diversity, rarity, commonness and spatial distribution patterns of aquatic macroinvertebrate communities from sites with different water sources, and (2) identify which environmental variables influence the density and presence of macroinvertebrate taxa and, in particular, of the subfamilies of the ubiquitous chironomids. Methods: Our study sites were grouped according to their water source and to their percentage of glacier coverage in the catchment (GCC). At each site we sampled aquatic macroinvertebrates, measured environmental variables and assessed community differences and environmental influence with ordination analyses and generalized linear models. Results: Kryal and mixed sites had an important proportion of rare taxa. Mean richness was highest in the mixed sites and lowest in the sites with the highest glacier cover; while sites with an intermediate percentage of glacier cover, had the highest values of α and β diversity. We found that 13 taxa (15.9%) were common to all stream site types. SIMPER analysis showed that Orthocladiinae, Hyalella sp. and Andesiops sp. contributed the most to the dissimilarity between site types (˃ 45% of cumulative contribution). RDA showed that kryal sites were associated with high turbidity and density of Podonomids, and with low temperature, amount of CPOM and densities of both Anomalocosmoecus sp. and Andesiops sp. Orthocladinae was associated with high current velocity and chlorophyll a concentration, whereas Hyalella sp. had a positive relationship with higher pH and streambed stability. Generalized linear models showed that GCC was the main variable explaining all faunal metrics. Current velocity explained macroinvertebrate abundance, water temperature was related to chironomid density and chlorophyll a influenced Orthocladiinae presence-absence. Conclusions: Our results suggest that by favoring the presence of rare taxa and taxa turnover, glacier influence may increase biodiversity in glacierised catchments. In terms of biodiversity conservation, this study confirms an urgent need to increase knowledge of high-Andean stream biodiversity, especially in highly heterogenous glacierised catchments, to better describe regional biodiversity patterns and community composition of these highly vulnerable freshwater ecosystems. Detailed analyses of benthic communities and development of databases are key for conservation strategies. Water management municipalities and/or enterprises should consider water quality and stream types for more sustainable management of these important ecosystems.


Introducción: Las cuencas glaciares son entornos remotos y hostiles, en los que los arroyos de diferentes fuentes de agua (p.ej., deshielo de glaciares, lluvia/deshielo, agua subterránea) convergen, creando un mosaico complejo de tramos con diferentes niveles de influencia glacial y condiciones ambientales. Esta heterogeneidad ambiental influye, a su vez, en el ensamblaje y composición de las comunidades acuáticas y produce complejos patrones de diversidad a la escala de la cuenca. Objetivos: En esta contribución, evaluamos la biodiversidad y composición de comunidades de macroinvertebrados acuáticos en 51 sitios de una cuenca glaciar en los Andes tropicales. Los objetivos de nuestro estudio fueron: (1) determinar la diversidad, la contribución de taxones raros y comunes y los patrones de distribución espacial de las comunidades de macroinvertebrados acuáticos en sitios con diferentes fuentes de agua, y (2) identificar qué variables ambientales influyen en la densidad y presencia de taxones de macroinvertebrados y, en particular, de las subfamilias de los omnipresentes quironómidos. Métodos: Agrupamos a nuestros sitios de estudio según su fuente de agua y su porcentaje de cobertura de glaciar en la cuenca (GCC). En cada sitio donde muestreamos macroinvertebrados acuáticos, medimos variables ambientales y evaluamos las diferencias entre comunidades y la influencia ambiental con análisis de ordenación y modelos lineales generalizados. Resultados: Los sitios kryal y mixtos tuvieron una proporción importante de taxones raros. La riqueza media fue más alta en los sitios mixtos y más baja en los sitios con mayor cobertura glaciar; mientras que los sitios con un porcentaje intermedio de cobertura glaciar tuvieron los valores más altos de diversidad α y β. Encontramos que 13 taxones (15,9%) fueron comunes a todos los tipos de sitios de estudio. El análisis SIMPER mostró que Orthocladiinae, Hyalella sp. y Andesiops sp. contribuyeron más a la disimilitud entre tipos de sitios (˃ 45% de la contribución acumulada). El RDA mostró que los sitios kryal estaban asociados con alta turbidez y densidad de podonómidos, y con baja temperatura, cantidad de CPOM y densidad de Anomalocosmoecus sp. y Andesiops sp. Orthocladinae se asoció con una alta velocidad de corriente y concentración de clorofila a, mientras que Hyalella sp. tuvo una relación positiva con pH más alto y estabilidad del lecho del río. Los modelos lineales generalizados mostraron que GCC fue la variable principal para explicar todas las métricas de fauna. La velocidad de corriente explicó la abundancia de macroinvertebrados, la temperatura del agua estuvo relacionada con la densidad de los quironómidos y la clorofila influenció la presencia-ausencia de Orthocladiinae. Conclusiones: Nuestros resultados sugieren que, al favorecer la presencia de taxones raros y la rotación de taxones, la influencia de los glaciares puede aumentar la biodiversidad en cuencas con influencia glaciar. En términos de conservación de la biodiversidad, este estudio confirma la necesidad urgente de incrementar el conocimiento de la biodiversidad en arroyos de la región altoandina, especialmente en cuencas glaciares altamente heterogéneas, para describir mejor los patrones de biodiversidad regional y la composición de las comunidades en estos ecosistemas altamente vulnerables. Análisis detallados de las comunidades bentónicas y el desarrollo de bases de datos son claves para diseñar estrategias de conservación. Los municipios y/o empresas administradoras de agua deben considerar la calidad del agua y los tipos de arroyos para una gestión más sostenible de estos importantes ecosistemas.


Subject(s)
River Basins , Invertebrates/classification , Andean Ecosystem , Biodiversity
2.
PLoS One ; 12(5): e0175814, 2017.
Article in English | MEDLINE | ID: mdl-28542172

ABSTRACT

While the impacts of climate change on individual species and communities have been well documented there is little evidence on climate-mediated changes for entire ecosystems. Pristine alpine environments can provide unique insights into natural, physical and ecological response to climate change yet broad scale and long-term studies on these potential 'ecosystem sentinels' are scarce. We addressed this issue by examining cover changes of 1689 high-elevation wetlands (temporarily or perennial water-saturated grounds) in the Bolivian Cordillera Real, a region that has experienced significant warming and glacier melting over the last 30 years. We combined high spatial resolution satellite images from PLEIADES with the long-term images archive from LANDSAT to 1) examine environmental factors (e.g., glacier cover, wetland and watershed size) that affected wetland cover changes, and 2) identify wetlands' features that affect their vulnerability (using habitat drying as a proxy) in the face of climate change. Over the (1984-2011) period, our data showed an increasing trend in the mean wetland total area and number, mainly related to the appearance of wet grassland patches during the wetter years. Wetland cover also showed high inter-annual variability and their area for a given year was positively correlated to precipitation intensities in the three months prior to the image date. Also, round wetlands located in highly glacierized catchments were less prone to drying, while relatively small wetlands with irregularly shaped contours suffered the highest rates of drying over the last three decades. High Andean wetlands can therefore be considered as ecosystem sentinels for climate change, as they seem sensitive to glacier melting. Beyond the specific focus of this study, our work illustrates how satellite-based monitoring of ecosystem sentinels can help filling the lack of information on the ecological consequences of current and changing climate conditions, a common and crucial issue especially in less-developed countries.


Subject(s)
Climate Change , Wetlands , Analysis of Variance , Bolivia , Grassland , Ice Cover , Linear Models , Remote Sensing Technology , Spacecraft , Time Factors
3.
Glob Chang Biol ; 22(9): 3196-205, 2016 09.
Article in English | MEDLINE | ID: mdl-27058991

ABSTRACT

The rapid melting of glacier cover is one of the most obvious impacts of climate change on alpine ecosystems and biodiversity. Our understanding of the impact of a decrease in glacier runoff on aquatic biodiversity is currently based on the 'glacier-heterogeneity-diversity' paradigm, according to which there is high α-diversity at intermediate levels of glacial influence due to the high degree of environmental heterogeneity caused by glacier water. This α-diversity pattern generates high levels of between-site aquatic community variation (high ß diversity) and increases regional diversity (γ-diversity). There is a rich conceptual background in favor of this paradigm, but empirical data supporting it are scarce. We investigated this paradigm by analyzing the different diversity patterns (α, ß and γ-diversity) of four aquatic groups (zooplankton, macroinvertebrates, algae and macrophytes) living in high-elevation peatlands (>4500 m above sea level). We sampled 200 pools from 20 peatlands along a glacier gradient in the Cordillera Real of Bolivia. We performed structural equation modeling (SEM) to analyze the potential mechanisms underlying the observed diversity patterns. Intermediate levels of glacial influence (15-20% cover) resulted in high heterogeneity, but α-diversity responded to glacial influence only for the zooplankton group (Cladocera). Our SEM analysis did not identify environmental heterogeneity as a significant variable explaining the relationship between glacier and α-diversity. Peatland area had a strong positive effect on heterogeneity and diversity. ß-diversity was significantly associated with glacier gradient, and 12.9% of the total regional diversity (γ-diversity) was restricted to peatlands with a high degree of glacial influence. These species might be lost in a context of glacial retreat. These findings provide new insight into the potential effects of glacial retreat on the aquatic environment and biodiversity in the peatlands of the tropical Andes.


Subject(s)
Biodiversity , Ice Cover , Animals , Aquatic Organisms , Bolivia , Climate Change , Ecosystem
4.
PLoS One ; 10(8): e0136793, 2015.
Article in English | MEDLINE | ID: mdl-26308853

ABSTRACT

Under the ongoing climate change, understanding the mechanisms structuring the spatial distribution of aquatic species in glacial stream networks is of critical importance to predict the response of aquatic biodiversity in the face of glacier melting. In this study, we propose to use metacommunity theory as a conceptual framework to better understand how river network structure influences the spatial organization of aquatic communities in glacierized catchments. At 51 stream sites in an Andean glacierized catchment (Ecuador), we sampled benthic macroinvertebrates, measured physico-chemical and food resource conditions, and calculated geographical, altitudinal and glaciality distances among all sites. Using partial redundancy analysis, we partitioned community variation to evaluate the relative strength of environmental conditions (e.g., glaciality, food resource) vs. spatial processes (e.g., overland, watercourse, and downstream directional dispersal) in organizing the aquatic metacommunity. Results revealed that both environmental and spatial variables significantly explained community variation among sites. Among all environmental variables, the glacial influence component best explained community variation. Overland spatial variables based on geographical and altitudinal distances significantly affected community variation. Watercourse spatial variables based on glaciality distances had a unique significant effect on community variation. Within alpine catchment, glacial meltwater affects macroinvertebrate metacommunity structure in many ways. Indeed, the harsh environmental conditions characterizing glacial influence not only constitute the primary environmental filter but also, limit water-borne macroinvertebrate dispersal. Therefore, glacier runoff acts as an aquatic dispersal barrier, isolating species in headwater streams, and preventing non-adapted species to colonize throughout the entire stream network. Under a scenario of glacier runoff decrease, we expect a reduction in both environmental filtering and dispersal limitation, inducing a taxonomic homogenization of the aquatic fauna in glacierized catchments as well as the extinction of specialized species in headwater groundwater and glacier-fed streams, and consequently an irreversible reduction in regional diversity.


Subject(s)
Biodiversity , Climate Change , Environmental Monitoring/methods , Ice Cover , Invertebrates/physiology , Animals , Argentina , Ecosystem , Invertebrates/classification , Population Dynamics , Rivers
5.
Ecology ; 92(3): 733-43, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21608481

ABSTRACT

. Despite the increased complexity of experimental and theoretical studies on the biodiversity-ecosystem functioning (B-EF) relationship, a major challenge is to demonstrate whether the observed importance of biodiversity in controlled experimental systems also persists in nature. Due to their structural simplicity and their low levels of human impacts, extreme species-poor ecosystems may provide new insights into B-EF relationships in natural systems. We address this issue using shredder invertebrate communities and organic matter decomposition rates in 24 high-altitude (3200-3900 m) Neotropical streams as a study model. We first assessed the effects of stream characteristics and shredder diversity and abundance on organic matter decomposition rates in coarse- and fine-mesh bags. We found the interaction term shredder richness x shredder abundance had the most significant impact on decomposition rates in the field, although water discharge may also play a role locally. We also examined the relative contribution of the three most abundant shredders on decomposition rates by manipulating shredder richness and community composition in a field experiment. Transgressive overyielding was detected among the three shredder species, indicating complementary resource use and/or facilitation. By integrating survey and experimental data in surface response analyses we found that observed B-EF patterns fit those predicted by a linear model that described litter decomposition rates as a function of increasing shredder richness and the relative abundance of the most efficient shredders. Finally, the validity of our approach was tested in a broader context by using two independent but comparable data sets from 49 French and Swedish streams showing more complex shredder community structure. Results revealed that richness and identity effects on decomposition rates were lost with increasing shredder community complexity. Our approach of combining experimental and empirical data with modeling in species-poor ecosystems may serve as an impetus for new B-EF studies. If theory can explain B-EF in low-diversity ecosystems, it may also have credibility in more complex ones.


Subject(s)
Altitude , Ecosystem , Rivers , Animals , Invertebrates/physiology
6.
Oecologia ; 154(4): 795-807, 2008 Jan.
Article in English | MEDLINE | ID: mdl-17960424

ABSTRACT

The objective of this study was to explore the altitudinal decrease in local richness of stream macroinvertebrates. I compared the explicatory power of a mid-domain effect (MDE) null model and a number of selected contemporary ecological variables, with a special emphasis on the altitude-mediated decrease in temperature and oxygen availability as possible driving factors for the observed pattern. Benthic macroinvertebrates were sampled at 30 stream sites between 2,600 and 4,000 m a.s.l. in northern Ecuador. All four measures of local richness (total number of taxa, taxa in Surber samples, Fisher's alpha index and rarefied richness) decreased with increasing altitude. The MDE null model, water temperature and dissolved oxygen also decreased with altitude, while other measured variables were uncorrelated with altitude. Minimum oxygen saturation had the highest explanatory power of the density-corrected Fisher's alpha and rarefied richness (R = 0.48 and 0.52, respectively), but also minimum temperature (R = 0.48 and 0.41) and the MDE null model (R = 0.48 and 0.46) correlated significantly. Multiple regression analyses using several predictive variables showed that oxygen saturation had the greatest and only significant effect on density-corrected richness. The relationship between richness and oxygen corrected for the effect of altitude (using analyses of double residuals) was significant, whereas that of richness versus temperature was not. The results indicate that the decrease in richness with increasing altitude is mainly caused by a decrease in oxygen saturation rather than by a decrease in temperature. Levels of oxygen saturation such as those found at high altitudes do not appear to be lethal to any species, but could affect macroinvertebrates through long-term, sub-lethal effects. I suggest that low oxygen availability may limit biodiversity at high altitudes not only in the aquatic, but also in the terrestrial environment.


Subject(s)
Altitude , Biodiversity , Invertebrates , Oxygen , Rivers , Animals , Ecuador , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL