Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Bone Oncol ; 34: 100423, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35378840

ABSTRACT

Background: Clinical practice guidelines recommend the use of bone-targeting agents for preventing skeletal-related events (SREs) among patients with bone metastases from solid tumors. The anti-RANKL monoclonal antibody denosumab is approved for the prevention of SREs in patients with bone metastases from solid tumors. However, real-world data are lacking on the impact of individual risk factors for SREs, specifically in the context of denosumab discontinuation. Purpose: We aim to identify risk factors associated with SRE incidence following denosumab discontinuation using a machine learning approach to help profile patients at a higher risk of developing SREs following discontinuation of denosumab treatment. Methods: Using the Optum PanTher Electronic Health Record repository, patients diagnosed with incident bone metastases from primary solid tumors between January 1, 2007, and September 1, 2019, were evaluated for inclusion in the study. Eligible patients received ≥ 2 consecutive 120 mg denosumab doses on a 4-week (± 14 days) schedule with a minimum follow-up of ≥ 1 year after the last denosumab dose, or an SRE occurring between days 84 and 365 after denosumab discontinuation. Extreme gradient boosting was used to develop an SRE risk prediction model evaluated on a test dataset. Multiple variables associated with patient demographics, comorbidities, laboratory values, treatments, and denosumab exposures were examined as potential factors for SRE risk using Shapley Additive Explanations (SHAP). Univariate analyses on risk factors with the highest importance from pooled and tumor-specific models were also conducted. Results: A total of 1,414 adult cancer patients (breast: 40%, prostate: 30%, lung: 13%, other: 17%) were eligible, of whom 1,133 (80%) were assigned to model training and 281 (20%) to model evaluation. The median age at inclusion was 67 (range, 19-89) years with a median duration of denosumab treatment of 253 (range, 88-2,726) days; 490 (35%) patients experienced ≥ 1 SRE 83 days after denosumab discontinuation. Meaningful model performance was evaluated by an area under the receiver operating curve score of 77% and an F1 score of 62%; model precision was 60%, with 63% sensitivity and 78% specificity. SHAP identified several significant factors for the tumor-agnostic and tumor-specific models that predicted an increased SRE risk following denosumab discontinuation, including prior SREs, shorter denosumab treatment duration, ≥ 4 clinic visits per month with at least one hospitalization (all-cause) event from the baseline period up to discontinuation of denosumab, younger age at bone metastasis, shorter time to denosumab initiation from bone metastasis, and prostate cancer. Conclusion: This analysis showed a higher cumulative number of SREs, prior SREs relative to denosumab initiation, a higher number of hospital visits, and a shorter denosumab treatment duration as significant factors that are associated with an increased SRE risk after discontinuation of denosumab, in both the tumor-agnostic and tumor-specific models. Our machine learning approach to SRE risk factor identification reinforces treatment guidance on the persistent use of denosumab and has the potential to help clinicians better assess a patient's need to continue denosumab treatment and improve patient outcomes.

2.
Nat Commun ; 11(1): 1580, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32221286

ABSTRACT

ADAR RNA editing enzymes are high-affinity dsRNA-binding proteins that deaminate adenosines to inosines in pre-mRNA hairpins and also exert editing-independent effects. We generated a Drosophila AdarE374A mutant strain encoding a catalytically inactive Adar with CRISPR/Cas9. We demonstrate that Adar adenosine deamination activity is necessary for normal locomotion and prevents age-dependent neurodegeneration. The catalytically inactive protein, when expressed at a higher than physiological level, can rescue neurodegeneration in Adar mutants, suggesting also editing-independent effects. Furthermore, loss of Adar RNA editing activity leads to innate immune induction, indicating that Drosophila Adar, despite being the homolog of mammalian ADAR2, also has functions similar to mammalian ADAR1. The innate immune induction in fly Adar mutants is suppressed by silencing of Dicer-2, which has a RNA helicase domain similar to MDA5 that senses unedited dsRNAs in mammalian Adar1 mutants. Our work demonstrates that the single Adar enzyme in Drosophila unexpectedly has dual functions.


Subject(s)
Adenosine Deaminase/genetics , Brain/metabolism , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Drosophila melanogaster/immunology , Immunity, Innate/genetics , RNA Editing/genetics , Adenosine Deaminase/chemistry , Adenosine Monophosphate/metabolism , Aging/pathology , Animals , Catalysis , Drosophila Proteins/chemistry , Drosophila Proteins/metabolism , Gene Expression Regulation , Locomotion , Nerve Degeneration/pathology , Point Mutation/genetics , Protein Domains , RNA Helicases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ribonuclease III/metabolism
3.
PLoS Genet ; 13(11): e1007064, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29182635

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing is an important post-transcriptional modification that affects the information encoded from DNA to RNA to protein. RNA editing can generate a multitude of transcript isoforms and can potentially be used to optimize protein function in response to varying conditions. In light of this and the fact that millions of editing sites have been identified in many different species, it is interesting to examine the extent to which these sites have evolved to be functionally important. In this review, we discuss results pertaining to the evolution of RNA editing, specifically in humans, cephalopods, and Drosophila. We focus on how comparative genomics approaches have aided in the identification of sites that are likely to be advantageous. The use of RNA editing as a mechanism to adapt to varying environmental conditions will also be reviewed.


Subject(s)
RNA Editing/genetics , RNA Editing/physiology , RNA/genetics , Acclimatization/genetics , Adaptation, Physiological/genetics , Adenosine/genetics , Adenosine/metabolism , Animals , Base Sequence/genetics , Evolution, Molecular , Genomics/methods , Humans , Inosine/genetics , Inosine/metabolism , RNA/metabolism
4.
PLoS Genet ; 13(2): e1006563, 2017 02.
Article in English | MEDLINE | ID: mdl-28166241

ABSTRACT

Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.


Subject(s)
Drosophila/genetics , Evolution, Molecular , RNA Editing/genetics , Regulatory Sequences, Nucleic Acid/genetics , 3' Untranslated Regions , Animals , Humans , RNA, Untranslated/genetics , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...