Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 9: 453, 2018.
Article in English | MEDLINE | ID: mdl-29563915

ABSTRACT

Complement receptor type 1 (CR1) is a multi modular membrane receptor composed of 30 homologous complement control protein modules (CCP) organized in four different functional regions called long homologous repeats (LHR A, B, C, and D). CR1 is a receptor for complement-opsonins C3b and C4b and specifically interacts through pairs of CCP modules located in LHR A, B, and C. Defense collagens such as mannose-binding lectin (MBL), ficolin-2, and C1q also act as opsonins and are involved in immune clearance through binding to the LHR-D region of CR1. Our previous results using deletion variants of CR1 mapped the interaction site for MBL and ficolin-2 on CCP24-25. The present work aimed at deciphering the interaction of C1q with CR1 using new CR1 variants concentrated around CCP24-25. CR1 bimodular fragment CCP24-25 and CR1 CCP22-30 deleted from CCP24-25 produced in eukaryotic cells enabled to highlight that the interaction site for both MBL and C1q is located on the same pair of modules CCP24-25. C1q binding to CR1 shares with MBL a main common interaction site on the collagen stalks but also subsidiary sites most probably located on C1q globular heads, contrarily to MBL.


Subject(s)
Complement C1q/chemistry , Mannose-Binding Lectin/chemistry , Peptides/chemistry , Receptors, Complement 3b/chemistry , Complement C1q/genetics , Complement C1q/immunology , Humans , Lectins/chemistry , Lectins/genetics , Lectins/immunology , Mannose-Binding Lectin/genetics , Mannose-Binding Lectin/immunology , Peptides/genetics , Peptides/immunology , Protein Binding , Protein Domains , Protein Structure, Secondary , Receptors, Complement 3b/genetics , Receptors, Complement 3b/immunology , Ficolins
2.
J Biol Chem ; 288(24): 17347-59, 2013 Jun 14.
Article in English | MEDLINE | ID: mdl-23620594

ABSTRACT

Cytochrome P450 CYP121 is essential for the viability of Mycobacterium tuberculosis. Studies in vitro show that it can use the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) as a substrate. We report an investigation of the substrate and reaction specificities of CYP121 involving analysis of the interaction between CYP121 and 14 cYY analogues with various modifications of the side chains or the diketopiperazine (DKP) ring. Spectral titration experiments show that CYP121 significantly bound only cyclodipeptides with a conserved DKP ring carrying two aryl side chains in l-configuration. CYP121 did not efficiently or selectively transform any of the cYY analogues tested, indicating a high specificity for cYY. The molecular determinants of this specificity were inferred from both crystal structures of CYP121-analog complexes solved at high resolution and solution NMR spectroscopy of the analogues. Bound cYY or its analogues all displayed a similar set of contacts with CYP121 residues Asn(85), Phe(168), and Trp(182). The propensity of the cYY tyrosyl to point toward Arg(386) was dependent on the presence of the DKP ring that limits the conformational freedom of the ligand. The correct positioning of the hydroxyl of this tyrosyl was essential for conversion of cYY. Thus, the specificity of CYP121 results from both a restricted binding specificity and a fine-tuned P450 substrate relationship. These results document the catalytic mechanism of CYP121 and improve our understanding of its function in vivo. This work contributes to progress toward the design of inhibitors of this essential protein of M. tuberculosis that could be used for antituberculosis therapy.


Subject(s)
Bacterial Proteins/chemistry , Cytochrome P-450 Enzyme System/chemistry , Dipeptides/chemistry , Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/chemistry , Antitubercular Agents/chemistry , Bacterial Proteins/antagonists & inhibitors , Catalytic Domain , Crystallography, X-Ray , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/chemistry , Hydrogen Bonding , Kinetics , Models, Molecular , Nuclear Magnetic Resonance, Biomolecular , Protein Binding , Solutions , Substrate Specificity
3.
J Immunol ; 190(7): 3721-31, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23460739

ABSTRACT

Complement receptor type 1 (CR1) is a membrane receptor expressed on a wide range of cells. It is involved in immune complex clearance, phagocytosis, and complement regulation. Its ectodomain is composed of 30 complement control protein (CCP) modules, organized into four long homologous repeats (A-D). In addition to its main ligands C3b and C4b, CR1 was reported to interact with C1q and mannan-binding lectin (MBL) likely through its C-terminal region (CCP22-30). To decipher the interaction of human CR1 with the recognition proteins of the lectin complement pathway, a recombinant fragment encompassing CCP22-30 was expressed in eukaryotic cells, and its interaction with human MBL and ficolins was investigated using surface plasmon resonance spectroscopy. MBL and L-ficolin were shown to interact with immobilized soluble CR1 and CR1 CCP22-30 with apparent dissociation constants in the nanomolar range, indicative of high affinity. The binding site for CR1 was located at or near the MBL-associated serine protease (MASP) binding site in the collagen stalks of MBL and L-ficolin, as shown by competition experiments with MASP-3. Accordingly, the mutation of an MBL conserved lysine residue essential for MASP binding (K55) abolished binding to soluble CR1 and CCP22-30. The CR1 binding site for MBL/ficolins was mapped to CCP24-25 of long homologous repeat D using deletion mutants. In conclusion, we show that ficolins are new CR1 ligands and propose that MBL/L-ficolin binding involves major ionic interactions between conserved lysine residues of their collagen stalks and surface exposed acidic residues located in CR1 CCP24 and/or CCP25.


Subject(s)
Complement Pathway, Mannose-Binding Lectin , Mannose-Binding Lectin/metabolism , Receptors, Complement/metabolism , Binding Sites , Carrier Proteins/metabolism , Complement Pathway, Mannose-Binding Lectin/genetics , Humans , Kinetics , Lectins/metabolism , Mannose-Binding Protein-Associated Serine Proteases/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Interaction Mapping , Receptors, Complement/chemistry , Receptors, Complement/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ficolins
4.
Proc Natl Acad Sci U S A ; 106(18): 7426-31, 2009 May 05.
Article in English | MEDLINE | ID: mdl-19416919

ABSTRACT

The gene encoding the cytochrome P450 CYP121 is essential for Mycobacterium tuberculosis. However, the CYP121 catalytic activity remains unknown. Here, we show that the cyclodipeptide cyclo(l-Tyr-l-Tyr) (cYY) binds to CYP121, and is efficiently converted into a single major product in a CYP121 activity assay containing spinach ferredoxin and ferredoxin reductase. NMR spectroscopy analysis of the reaction product shows that CYP121 catalyzes the formation of an intramolecular C-C bond between 2 tyrosyl carbon atoms of cYY resulting in a novel chemical entity. The X-ray structure of cYY-bound CYP121, solved at high resolution (1.4 A), reveals one cYY molecule with full occupancy in the large active site cavity. One cYY tyrosyl approaches the heme and establishes a specific H-bonding network with Ser-237, Gln-385, Arg-386, and 3 water molecules, including the sixth iron ligand. These observations are consistent with low temperature EPR spectra of cYY-bound CYP121 showing a change in the heme environment with the persistence of the sixth heme iron ligand. As the carbon atoms involved in the final C-C coupling are located 5.4 A apart according to the CYP121-cYY complex crystal structure, we propose that C-C coupling is concomitant with substrate tyrosyl movements. This study provides insight into the catalytic activity, mechanism, and biological function of CYP121. Also, it provides clues for rational design of putative CYP121 substrate-based antimycobacterial agents.


Subject(s)
Cytochrome P-450 Enzyme System/chemistry , Dipeptides/chemistry , Mycobacterium tuberculosis/enzymology , Peptides, Cyclic/chemistry , Binding Sites , Catalysis , Crystallography, X-Ray , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism , Hydrogen Bonding , Mycobacterium tuberculosis/genetics , Nuclear Magnetic Resonance, Biomolecular , Oxygen/chemistry , Oxygen/metabolism , Protein Conformation , Substrate Specificity
5.
Nat Chem Biol ; 5(6): 414-20, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19430487

ABSTRACT

Cyclodipeptides and their derivatives belong to the diketopiperazine (DKP) family, which is comprised of a broad array of natural products that exhibit useful biological properties. In the few known DKP biosynthetic pathways, nonribosomal peptide synthetases (NRPSs) are involved in the synthesis of cyclodipeptides that constitute the DKP scaffold, except in the albonoursin (1) pathway. Albonoursin, or cyclo(alpha,beta-dehydroPhe-alpha,beta-dehydroLeu), is an antibacterial DKP produced by Streptomyces noursei. In this pathway, the formation of the cyclo(Phe-Leu) (2) intermediate is catalyzed by AlbC, a small protein unrelated to NRPSs. We demonstrated that AlbC uses aminoacyl-tRNAs as substrates to catalyze the formation of the DKP peptide bonds. Moreover, several other bacterial proteins, presenting moderate similarity to AlbC, also use aminoacyl-tRNAs to synthesize various cyclodipeptides. Therefore, AlbC and these related proteins belong to a newly defined family of enzymes that we have named cyclodipeptide synthases (CDPSs).


Subject(s)
Peptide Synthases/metabolism , RNA, Transfer/metabolism , Biocatalysis , Molecular Sequence Data , Peptide Synthases/chemistry , Streptomyces/enzymology , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...