Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Epigenetics ; 13(10-11): 1039-1055, 2018.
Article in English | MEDLINE | ID: mdl-30343628

ABSTRACT

DNA methylation is an epigenetic regulator of gene transcription, which has been found to be both metastable and variable within human cohort studies. Currently, few studies have been done to identify metastable DNA methylation biomarkers associated with longitudinal lung function decline in humans. The identification of such biomarkers is important for screening vulnerable populations. We hypothesized that quantifiable blood-based DNA methylation alterations would serve as metastable biomarkers of lung function decline and aging, which may help to discover new pathways and/or mechanisms related to pulmonary pathogenesis. Using linear mixed models, we performed an Epigenome Wide Association Study (EWAS) between DNA methylation at CpG dinucleotides and longitudinal lung function (FVC, FEV1, FEF25-75%) decline and aging with initial discovery in the Normative Aging Study, and replication in the Cooperative Health Research in the Region of Augsburg cohort. We identified two metastable epigenetic loci associated with either poor lung function and aging, cg05575921 (AHRR gene), or lung function independently of aging, cg06126421 (IER3 gene). These loci may inform basic mechanisms associated with pulmonary function, pathogenesis, and aging. Human epigenomic variation, may help explain features of lung function decline and related pathophysiology not attributable to DNA sequence alone, such as accelerated pulmonary decline in smokers, former smokers, and perhaps non-smokers. Our EWAS across two cohorts, therefore, will likely have implications for the human population, not just the elderly.


Subject(s)
Aging/pathology , DNA Methylation , Epigenesis, Genetic , Lung Diseases/genetics , Lung/growth & development , Aged , Aging/genetics , CpG Islands , Female , Genome-Wide Association Study , Humans , Lung/pathology , Male
2.
Geroscience ; 39(5-6): 475-489, 2017 12.
Article in English | MEDLINE | ID: mdl-29159506

ABSTRACT

DNA methylation (DNAm) has been found to show robust and widespread age-related changes across the genome. DNAm profiles from whole blood can be used to predict human aging rates with great accuracy. We sought to test whether DNAm-based predictions of age are related to phenotypes associated with type 2 diabetes (T2D), with the goal of identifying risk factors potentially mediated by DNAm. Our participants were 43 women enrolled in the Women's Health Initiative. We obtained methylation data via the Illumina 450K Methylation array on whole blood samples from participants at three timepoints, covering on average 16 years per participant. We employed the method and software of Horvath, which uses DNAm at 353 CpGs to form a DNAm-based estimate of chronological age. We then calculated the epigenetic age acceleration, or Δage, at each timepoint. We fit linear mixed models to characterize how Δage contributed to a longitudinal model of aging and diabetes-related phenotypes and risk factors. For most participants, Δage remained constant, indicating that age acceleration is generally stable over time. We found that Δage associated with body mass index (p = 0.0012), waist circumference (p = 0.033), and fasting glucose (p = 0.0073), with the relationship with BMI maintaining significance after correction for multiple testing. Replication in a larger cohort of 157 WHI participants spanning 3 years was unsuccessful, possibly due to the shorter time frame covered. Our results suggest that DNAm has the potential to act as a mediator between aging and diabetes-related phenotypes, or alternatively, may serve as a biomarker of these phenotypes.


Subject(s)
Aging/genetics , DNA Methylation , Diabetes Mellitus, Type 2/genetics , Epigenesis, Genetic , Age Distribution , Aged , Aging/physiology , Body Mass Index , Diabetes Mellitus, Type 2/epidemiology , Diabetes Mellitus, Type 2/physiopathology , Female , Genome-Wide Association Study , Humans , Longitudinal Studies , Middle Aged , Predictive Value of Tests , Prevalence , Risk Assessment , United States
3.
EBioMedicine ; 5: 68-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-27077113

ABSTRACT

Biological measures of aging are important for understanding the health of an aging population, with epigenetics particularly promising. Previous studies found that tumor tissue is epigenetically older than its donors are chronologically. We examined whether blood Δage (the discrepancy between epigenetic and chronological ages) can predict cancer incidence or mortality, thus assessing its potential as a cancer biomarker. In a prospective cohort, Δage and its rate of change over time were calculated in 834 blood leukocyte samples collected from 442 participants free of cancer at blood draw. About 3-5 years before cancer onset or death, Δage was associated with cancer risks in a dose-responsive manner (P = 0.02) and a one-year increase in Δage was associated with cancer incidence (HR: 1.06, 95% CI: 1.02-1.10) and mortality (HR: 1.17, 95% CI: 1.07-1.28). Participants with smaller Δage and decelerated epigenetic aging over time had the lowest risks of cancer incidence (P = 0.003) and mortality (P = 0.02). Δage was associated with cancer incidence in a 'J-shaped' manner for subjects examined pre-2003, and with cancer mortality in a time-varying manner. We conclude that blood epigenetic age may mirror epigenetic abnormalities related to cancer development, potentially serving as a minimally invasive biomarker for cancer early detection.


Subject(s)
Aging/genetics , DNA Methylation/genetics , Epigenomics , Neoplasms/genetics , Aged , Aging/blood , Aging/pathology , Female , Humans , Male , Middle Aged , Neoplasms/blood , Neoplasms/mortality , Neoplasms/pathology
4.
Bioinformatics ; 32(3): 469-71, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26449931

ABSTRACT

SUMMARY: The development of the Infinium HumanMethylation450 BeadChip enables epigenome-wide association studies at a reduced cost. One observation of the 450K data is that many CpG sites the beadchip interrogates have very large measurement errors. Including these noisy CpGs will decrease the statistical power of detecting relevant associations due to multiple testing correction. We propose to use intra-class correlation coefficient (ICC), which characterizes the relative contribution of the biological variability to the total variability, to filter CpGs when technical replicates are available. We estimate the ICC based on a linear mixed effects model by pooling all the samples instead of using the technical replicates only. An ultra-fast algorithm has been developed to address the computational complexity and CpG filtering can be completed in minutes on a desktop computer for a 450K data set of over 1000 samples. Our method is very flexible and can accommodate any replicate design. Simulations and a real data application demonstrate that our whole-sample ICC method performs better than replicate-sample ICC or variance-based method. AVAILABILITY AND IMPLEMENTATION: CpGFilter is implemented in R and publicly available under CRAN via the R package 'CpGFilter'. CONTACT: chen.jun2@mayo.edu or xlin@hsph.harvard.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Computational Biology/methods , CpG Islands , DNA Methylation , Epigenomics/methods , Genome-Wide Association Study , Genome, Human , Humans , Oligonucleotide Array Sequence Analysis , Software
5.
Cell Rep ; 11(4): 605-17, 2015 Apr 28.
Article in English | MEDLINE | ID: mdl-25892232

ABSTRACT

We provide evidence that the Unc-51-like kinase 1 (ULK1) is activated during engagement of the type I interferon (IFN) receptor (IFNR). Our studies demonstrate that the function of ULK1 is required for gene transcription mediated via IFN-stimulated response elements (ISRE) and IFNγ activation site (GAS) elements and controls expression of key IFN-stimulated genes (ISGs). We identify ULK1 as an upstream regulator of p38α mitogen-activated protein kinase (MAPK) and establish that the regulatory effects of ULK1 on ISG expression are mediated possibly by engagement of the p38 MAPK pathway. Importantly, we demonstrate that ULK1 is essential for antiproliferative responses and type I IFN-induced antineoplastic effects against malignant erythroid precursors from patients with myeloproliferative neoplasms. Together, these data reveal a role for ULK1 as a key mediator of type I IFNR-generated signals that control gene transcription and induction of antineoplastic responses.


Subject(s)
Interferon Type I/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , MAP Kinase Signaling System , Protein Serine-Threonine Kinases/metabolism , Autophagy-Related Protein-1 Homolog , Cell Line, Tumor , Cells, Cultured , Erythroid Cells/metabolism , Gene Expression Regulation, Neoplastic , Humans , Interferon Regulatory Factors/genetics , Interferon Regulatory Factors/metabolism , Intracellular Signaling Peptides and Proteins/genetics , Myeloproliferative Disorders/metabolism , Protein Serine-Threonine Kinases/genetics , Response Elements , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Cancer Cell ; 27(2): 286-97, 2015 Feb 09.
Article in English | MEDLINE | ID: mdl-25670082

ABSTRACT

We report the most common single-nucleotide substitution/deletion mutations in favorable histology Wilms tumors (FHWTs) to occur within SIX1/2 (7% of 534 tumors) and microRNA processing genes (miRNAPGs) DGCR8 and DROSHA (15% of 534 tumors). Comprehensive analysis of 77 FHWTs indicates that tumors with SIX1/2 and/or miRNAPG mutations show a pre-induction metanephric mesenchyme gene expression pattern and are significantly associated with both perilobar nephrogenic rests and 11p15 imprinting aberrations. Significantly decreased expression of mature Let-7a and the miR-200 family (responsible for mesenchymal-to-epithelial transition) in miRNAPG mutant tumors is associated with an undifferentiated blastemal histology. The combination of SIX and miRNAPG mutations in the same tumor is associated with evidence of RAS activation and a higher rate of relapse and death.


Subject(s)
Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , RNA-Binding Proteins/genetics , Ribonuclease III/genetics , Wilms Tumor/genetics , Gene Expression Regulation, Neoplastic , Humans , Loss of Heterozygosity/genetics , MicroRNAs/genetics , Mutation , Neoplasm Recurrence, Local/genetics , Neoplasm Recurrence, Local/pathology , Polymorphism, Single Nucleotide , Wilms Tumor/pathology
7.
J Biomol Tech ; 26(1): 4-18, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25649271

ABSTRACT

This article includes supplemental data. Please visit http://www.fasebj.org to obtain this information.Multiple recent publications on RNA sequencing (RNA-seq) have demonstrated the power of next-generation sequencing technologies in whole-transcriptome analysis. Vendor-specific protocols used for RNA library construction often require at least 100 ng total RNA. However, under certain conditions, much less RNA is available for library construction. In these cases, effective transcriptome profiling requires amplification of subnanogram amounts of RNA. Several commercial RNA amplification kits are available for amplification prior to library construction for next-generation sequencing, but these kits have not been comprehensively field evaluated for accuracy and performance of RNA-seq for picogram amounts of RNA. To address this, 4 types of amplification kits were tested with 3 different concentrations, from 5 ng to 50 pg, of a commercially available RNA. Kits were tested at multiple sites to assess reproducibility and ease of use. The human total reference RNA used was spiked with a control pool of RNA molecules in order to further evaluate quantitative recovery of input material. Additional control data sets were generated from libraries constructed following polyA selection or ribosomal depletion using established kits and protocols. cDNA was collected from the different sites, and libraries were synthesized at a single site using established protocols. Sequencing runs were carried out on the Illumina platform. Numerous metrics were compared among the kits and dilutions used. Overall, no single kit appeared to meet all the challenges of small input material. However, it is encouraging that excellent data can be recovered with even the 50 pg input total RNA.


Subject(s)
Nucleic Acid Amplification Techniques/standards , Sequence Analysis, RNA/standards , Animals , Base Sequence , DNA, Complementary/genetics , Humans , Limit of Detection , Mice , Polyadenylation , RNA/genetics , Rats , Reference Standards
8.
G3 (Bethesda) ; 5(4): 487-96, 2015 Jan 23.
Article in English | MEDLINE | ID: mdl-25617409

ABSTRACT

Nonalcoholic fatty liver disease (NAFLD) is a highly prevalent form of human hepatic disease and feeding mice a high-fat, high-caloric (HFHC) diet is a standard model of NAFLD. To better understand the genetic basis of NAFLD, we conducted an expression quantitative trait locus (eQTL) analysis of mice fed a HFHC diet. Two-hundred sixty-five (A/J × C57BL/6J) F2 male mice were fed a HFHC diet for 8 wk. eQTL analysis was utilized to identify genomic regions that regulate hepatic gene expression of Xbp1s and Socs3. We identified two overlapping loci for Xbp1s and Socs3 on Chr 1 (164.0-185.4 Mb and 174.4-190.5 Mb, respectively) and Chr 11 (41.1-73.1 Mb and 44.0-68.6 Mb, respectively), and an additional locus for Socs3 on Chr 12 (109.9-117.4 Mb). C57BL/6J-Chr 11(A/J)/ NaJ mice fed a HFHC diet manifested the A/J phenotype of increased Xbp1s and Socs3 gene expression (P < 0.05), whereas C57BL/6J-Chr 1(A/J)/ NaJ mice retained the C57BL/6J phenotype. In addition, we replicated the eQTLs on Chr 1 and Chr 12 (LOD scores ≥3.5) using mice from the BXD murine reference panel challenged with CCl4 to induce chronic liver injury and fibrosis. We have identified overlapping eQTLs for Xbp1 and Socs3 on Chr 1 and Chr 11, and consomic mice confirmed that replacing the C57BL/6J Chr 11 with the A/J Chr 11 resulted in an A/J phenotype for Xbp1 and Socs3 gene expression. Identification of the genes for these eQTLs will lead to a better understanding of the genetic factors responsible for NAFLD and potentially other hepatic diseases.


Subject(s)
DNA-Binding Proteins/metabolism , Liver/metabolism , Quantitative Trait Loci , Suppressor of Cytokine Signaling Proteins/metabolism , Transcription Factors/metabolism , Animals , Carbon Tetrachloride/toxicity , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/pathology , Chromosomes , DNA-Binding Proteins/genetics , Diet, High-Fat , Gene Expression Regulation , Male , Metabolic Diseases/metabolism , Metabolic Diseases/pathology , Mice , Mice, Inbred C57BL , Mice, Inbred Strains , Non-alcoholic Fatty Liver Disease/metabolism , Non-alcoholic Fatty Liver Disease/pathology , Phenotype , Regulatory Factor X Transcription Factors , Suppressor of Cytokine Signaling 3 Protein , Suppressor of Cytokine Signaling Proteins/genetics , Transcription Factors/genetics , X-Box Binding Protein 1
9.
Nat Commun ; 5: 5125, 2014 Sep 25.
Article in English | MEDLINE | ID: mdl-25254650

ABSTRACT

There is a critical need for standard approaches to assess, report and compare the technical performance of genome-scale differential gene expression experiments. Here we assess technical performance with a proposed standard 'dashboard' of metrics derived from analysis of external spike-in RNA control ratio mixtures. These control ratio mixtures with defined abundance ratios enable assessment of diagnostic performance of differentially expressed transcript lists, limit of detection of ratio (LODR) estimates and expression ratio variability and measurement bias. The performance metrics suite is applicable to analysis of a typical experiment, and here we also apply these metrics to evaluate technical performance among laboratories. An interlaboratory study using identical samples shared among 12 laboratories with three different measurement processes demonstrates generally consistent diagnostic power across 11 laboratories. Ratio measurement variability and bias are also comparable among laboratories for the same measurement process. We observe different biases for measurement processes using different mRNA-enrichment protocols.


Subject(s)
Gene Expression Profiling/methods , RNA, Messenger/genetics , Gene Expression Profiling/standards , Humans , Reference Standards , Reproducibility of Results
10.
Nat Biotechnol ; 32(9): 915-925, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25150835

ABSTRACT

High-throughput RNA sequencing (RNA-seq) greatly expands the potential for genomics discoveries, but the wide variety of platforms, protocols and performance capabilitites has created the need for comprehensive reference data. Here we describe the Association of Biomolecular Resource Facilities next-generation sequencing (ABRF-NGS) study on RNA-seq. We carried out replicate experiments across 15 laboratory sites using reference RNA standards to test four protocols (poly-A-selected, ribo-depleted, size-selected and degraded) on five sequencing platforms (Illumina HiSeq, Life Technologies PGM and Proton, Pacific Biosciences RS and Roche 454). The results show high intraplatform (Spearman rank R > 0.86) and inter-platform (R > 0.83) concordance for expression measures across the deep-count platforms, but highly variable efficiency and cost for splice junction and variant detection between all platforms. For intact RNA, gene expression profiles from rRNA-depletion and poly-A enrichment are similar. In addition, rRNA depletion enables effective analysis of degraded RNA samples. This study provides a broad foundation for cross-platform standardization, evaluation and improvement of RNA-seq.


Subject(s)
Gene Expression Profiling , High-Throughput Nucleotide Sequencing/methods , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL