Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 336(1): 47-55, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20881018

ABSTRACT

Cytochrome P-450 epoxygenases metabolize arachidonic acid (AA) to epoxyeicosatrienoic acids (EETs). EETs relax vascular smooth muscle by membrane hyperpolarization. 14,15-Epoxyeicosa-5(Z)-enoic acid (14,15-EE5ZE) antagonizes many vascular actions of EETs. EETs are converted to the corresponding dihydroxyeicosatrienoic acids by soluble epoxide hydrolase (sEH). sEH activity in the bovine arterial endothelium and smooth muscle regulates endogenous EETs. This study examined sEH metabolism of 14,15-EE5ZE to 14,15-dihydroxy-eicosa-5(Z)-enoic acid (14,15-DHE5ZE) and the resultant consequences on EET relaxations of bovine coronary arteries (BCAs). BCAs converted 14,15-EE5ZE to 14,15-DHE5ZE. This conversion was blocked by the sEH inhibitor 12-(3-adamantan-1-yl-ureido)-dodecanoic acid (AUDA). 14,15-EET relaxations (maximal relaxation, 83.4 ± 4.5%) were inhibited by 14,15-DHE5ZE (10 µM; maximal relaxation, 36.1 ± 9.0%; p < 0.001). In sharp contrast with 14,15-EE5ZE, 14,15-DHE5ZE is a 14,15-EET-selective inhibitor and did not inhibit 5,6-, 8,9-, or 11,12-EET relaxations. 14,15-EET and 11,12-EET relaxations were similar in the presence and absence of AUDA (1 µM). 14,15-EE5ZE inhibited 14,15-EET relaxations to a similar extent with and without AUDA pretreatment. However, 14,15-EE5ZE inhibited 11,12-EET relaxations to a greater extent with than without AUDA pretreatment. These observations indicate that sEH converts 14,15-EE5ZE to 14,15-DHE5ZE, and this alteration influences antagonist selectivity against EET-regioisomers. 14,15-DHE5ZE inhibited endothelium-dependent relaxations to AA but not endothelium-independent relaxations to sodium nitroprusside. A series of sEH-resistant ether analogs of 14,15-EE5ZE was developed, and analogs with agonist and antagonist properties were identified. The present study indicates that conversion of 14,15-EE5ZE to 14,15-DHE5ZE produces a 14,15-EET-selective antagonist that will be a useful pharmacological tool to identify EET receptor(s) and EET function in the cardiovascular system.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Coronary Vessels/drug effects , Vasodilation/drug effects , 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Cattle , Coronary Vessels/physiology , Dose-Response Relationship, Drug , Vasodilation/physiology
2.
Am J Physiol Heart Circ Physiol ; 290(4): H1326-36, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16537788

ABSTRACT

Recently, we reported that 11,12-epoxyeicosatrienoic acid (11,12-EET) potently activates rat mesenteric arterial ATP-sensitive K(+) (K(ATP)) channels and produces significant vasodilation through protein kinase A-dependent mechanisms. In this study, we tried to further delineate the signaling steps involved in the activation of vascular K(ATP) channels by EETs. Whole cell patch-clamp recordings [0.1 mM ATP in the pipette, holding potential (HP) = 0 mV and testing potential (TP) = -100 mV] in freshly isolated rat mesenteric smooth muscle cells showed small glibenclamide-sensitive K(ATP) currents (19.0 +/- 7.9 pA, n = 5) that increased 6.9-fold on exposure to 5 microM 14,15-EET (132.0 +/- 29.0 pA, n = 7, P < 0.05 vs. control). With 1 mM ATP in the pipette solution, K(ATP) currents (HP = 0 mV and TP = -100 mV) were increased 3.5-fold on exposure to 1 microM 14,15-EET (57.5 +/- 14.3 pA, n = 9, P < 0.05 vs. baseline). In the presence of 100 nM iberiotoxin, 1 microM 14,15-EET hyperpolarized the membrane potential from -20.5 +/- 0.9 mV at baseline to -27.1 +/- 3.0 mV (n = 6 for both, P < 0.05 vs. baseline), and the EET effects were significantly reversed by 10 microM glibenclamide (-21.8 +/- 1.4 mV, n = 6, P < 0.05 vs. EET). Incubation with 5 microM 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE), a 14,15-EET antagonist, abolished the 14,15-EET effects (31.0 +/- 11.8 pA, n = 5, P < 0.05 vs. 14,15-EET, P = not significant vs. control). The 14,15-EET effects were inhibited by inclusion of anti-G(s)alpha antibody (1:500 dilution) but not by control IgG in the pipette solution. The effects of 14,15-EET were mimicked by cholera toxin (100 ng/ml), an exogenous ADP-ribosyltransferase. Treatment with the ADP-ribosyltransferase inhibitors 3-aminobenzamide (1 mM) or m-iodobenzylguanidine (100 microM) abrogated the effects of 14,15-EET on K(ATP) currents. These results were corroborated by vasodilation studies. 14,15-EET dose-dependently dilated isolated small mesenteric arteries, and this was significantly attenuated by treatment with 14,15-EEZE or 3-aminobenzamide. These results suggest that 14,15-EET activates vascular K(ATP) channels through ADP-ribosylation of G(s)alpha.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Ion Channel Gating/physiology , Mesenteric Arteries/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Potassium Channels/metabolism , Vasodilation/physiology , 8,11,14-Eicosatrienoic Acid/pharmacology , Animals , Cells, Cultured , Ion Channel Gating/drug effects , Male , Mesenteric Arteries/cytology , Mesenteric Arteries/drug effects , Muscle, Smooth, Vascular/cytology , Muscle, Smooth, Vascular/drug effects , Myocytes, Smooth Muscle/drug effects , Potassium Channels/drug effects , Rats , Rats, Sprague-Dawley , Vasodilation/drug effects , Vasodilator Agents/pharmacology
3.
J Pharmacol Exp Ther ; 316(1): 371-9, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16169934

ABSTRACT

The epidermis expresses cyclooxygenases, lipoxygenases, and cytochromes P450, which utilize arachidonic acid to generate a diverse array of lipid mediators affecting epidermal cellular differentiation and functions. Recent studies show that mouse epidermis expresses CYP2B19, a keratinocyte-specific epoxygenase that generates 11,12- and 14,15-epoxyeicosatrienoic (EET) acids from arachidonate. We studied CYP2B19-dependent metabolism in mouse epidermal microsomes, reconstituted in the presence of [1-(14)C]arachidonic acid. The majority of the (14)C products formed independently of NADPH, indicative of robust epidermal cyclooxygenase and lipoxygenase activities. We studied two NADPH-dependent products generated in a highly reproducible manner from arachidonate. One of these (product I) coeluted with the CYP2B19 product 14,15-EET on a reversed-phase high-performance liquid chromatography (HPLC) system; there was no evidence for other regioisomeric EET products. Further analyses proved that product I was not an epoxy fatty acid, based on different retention times on a normal-phase HPLC system and failure of product I to undergo hydrolysis in acidic solution. We analyzed purified epidermal (14)C products by liquid chromatography negative electrospray ionization mass spectrometry. Structures of the NADPH-dependent products were confirmed to be 12-oxo-5,8,14-eicosatrienoic acid (I) and 12-hydroxy-5,8,14-eicosatrienoic acid (II). This was the first evidence for a 12-hydroxy-5,8,14-eicosatrienoic acid biosynthetic pathway in mouse epidermis. Epidermal microsomes also generated 12-hydroperoxy, 12-hydroxy, and 12-oxo eicosatetraenoic acids from arachidonate, possible intermediates in the 12-hydroxy-5,8,14-eicosatrienoic acid biosynthetic pathway. These results predict that hydroxyeicosatrienoic acids are synthesized from arachidonate in human epidermis. This would have important implications for human skin diseases given the known pro- and anti-inflammatory activities of stereo- and regioisomeric hydroxyeicosatrienoic acids.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , Arachidonic Acid/metabolism , Microsomes/metabolism , Skin/metabolism , 8,11,14-Eicosatrienoic Acid/metabolism , Animals , Animals, Newborn , Aryl Hydrocarbon Hydroxylases/metabolism , Chromatography, Liquid , Cytochrome P450 Family 2 , Lipoxygenase/metabolism , Mass Spectrometry , Mice , Mixed Function Oxygenases/metabolism , NADP/metabolism , Stereoisomerism
4.
Hypertension ; 42(4): 555-61, 2003 Oct.
Article in English | MEDLINE | ID: mdl-12953017

ABSTRACT

Endothelium-dependent hyperpolarizations and relaxation of vascular smooth muscle induced by acetylcholine and bradykinin are mediated by endothelium-derived hyperpolarizing factors (EDHFs). In bovine coronary arteries, arachidonic acid metabolites, epoxyeicosatrienoic acids (EETs), function as EDHFs. The 14,15-EET analog 14,15-epoxyeicosa-5(Z)-enoic-methylsulfonylimide (14,15-EEZE-mSI) was synthesized and tested for agonist and antagonist activity. In U46619-preconstricted bovine coronary arterial rings, 14,15-, 11,12-, 8,9-, and 5,6-EET induced maximal concentration-related relaxation averaging 75% to 87% at 10 micromol/L, whereas, 14,15-EEZE-mSI induced maximal relaxation averaging only 7%. 14,15-EEZE-mSI (10 micromol/L) preincubation inhibited relaxation to 14,15- and 5,6- EET but not 11,12- or 8,9- EET. 14,15-EEZE-mSI also inhibited indomethacin-resistant relaxation to arachidonic acid and indomethacin-resistant and l-nitroarginine-resistant relaxation to bradykinin and methacholine. It did not alter the relaxation to sodium nitroprusside, iloprost, or the K+ channel openers bimakalim or NS1619. In cell-attached patches of isolated bovine coronary arterial smooth muscle cells, 14,15-EEZE-mSI (100 nmol/L) blocked the 14,15-EET-induced (100 nmol/L) activation of large-conductance, calcium-activated K+ channels. Mass spectrometric analysis of rat renal cortical microsomes incubated with arachidonic acid showed that 14,15-EEZE-mSI (10 micromol/L) increased EET concentrations while decreasing the concentrations of the corresponding dihydroxyeicosatrienoic acids. Therefore, 14,15-EEZE-mSI inhibits relaxation to 5,6- and 14,15- EET and the K+ channel activation by 14,15-EET. It also inhibits the EDHF component of bradykinin-induced, methacholine-induced, and arachidonic acid-induced relaxation. These results suggest that 14,15- or 5,6 -EET act as an EDHF in bovine coronary arteries.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/antagonists & inhibitors , 8,11,14-Eicosatrienoic Acid/pharmacology , Coronary Vessels/physiology , Sulfonamides/pharmacology , Vasodilator Agents/antagonists & inhibitors , 8,11,14-Eicosatrienoic Acid/chemistry , Animals , Arachidonic Acid/metabolism , Cattle , Coronary Vessels/drug effects , Culture Techniques , Patch-Clamp Techniques , Potassium Channels, Calcium-Activated/metabolism , Rats , Sulfonamides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...