Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(10)2021 May 15.
Article in English | MEDLINE | ID: mdl-34063488

ABSTRACT

α1-Antitrypsin is a protease inhibitor belonging to the serpin family. Serpin polymerisation is at the core of a class of genetic conformational diseases called serpinopathies. These polymers are known to be unbranched, flexible, and heterogeneous in size with a beads-on-a-string appearance viewed by negative stain electron microscopy. Here, we use atomic force microscopy and time-lapse dynamic light scattering to measure polymer size and shape for wild-type (M) and Glu342→Lys (Z) α1-antitrypsin, the most common variant that leads to severe pathological deficiency. Our data for small polymers deposited onto mica and in solution reveal a power law relation between the polymer size, namely the end-to-end distance or the hydrodynamic radius, and the polymer mass, proportional to the contour length. We use the scaling concepts of polymer physics to assess that α1-antitrypsin polymers are random linear chains with a low persistence length.

2.
Bioorg Med Chem Lett ; 41: 127973, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33753261

ABSTRACT

α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α1-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors.


Subject(s)
Drug Design , Protein Folding , alpha 1-Antitrypsin/metabolism , Crystallization , Drug Development/methods , Drug Evaluation, Preclinical , Endoplasmic Reticulum/metabolism , Gene Library , Hepatocytes/metabolism , Humans , Models, Molecular , Protein Conformation , alpha 1-Antitrypsin/genetics
3.
Dev Cell ; 56(6): 747-760.e6, 2021 03 22.
Article in English | MEDLINE | ID: mdl-33667344

ABSTRACT

Loss of insulin-secreting pancreatic ß cells through apoptosis contributes to the progression of type 2 diabetes, but underlying mechanisms remain elusive. Here, we identify a pathway in which the cell death inhibitor ARC paradoxically becomes a killer during diabetes. While cytoplasmic ARC maintains ß cell viability and pancreatic architecture, a pool of ARC relocates to the nucleus to induce ß cell apoptosis in humans with diabetes and several pathophysiologically distinct mouse models. ß cell death results through the coordinate downregulation of serpins (serine protease inhibitors) not previously known to be synthesized and secreted by ß cells. Loss of the serpin α1-antitrypsin from the extracellular space unleashes elastase, triggering the disruption of ß cell anchorage and subsequent cell death. Administration of α1-antitrypsin to mice with diabetes prevents ß cell death and metabolic abnormalities. These data uncover a pathway for ß cell loss in type 2 diabetes and identify an FDA-approved drug that may impede progression of this syndrome.


Subject(s)
Apoptosis , Cell Nucleus/metabolism , Cytoskeletal Proteins/metabolism , Diabetes Mellitus, Experimental/pathology , Diabetes Mellitus, Type 2/pathology , Insulin-Secreting Cells/pathology , Nerve Tissue Proteins/metabolism , alpha 1-Antitrypsin/chemistry , Animals , Apoptosis Regulatory Proteins/physiology , Cytoplasm/metabolism , Cytoskeletal Proteins/genetics , Diabetes Mellitus, Experimental/etiology , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Type 2/etiology , Diabetes Mellitus, Type 2/metabolism , Female , Humans , Insulin-Secreting Cells/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Muscle Proteins/physiology , Nerve Tissue Proteins/genetics , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism
4.
EMBO Mol Med ; 13(3): e13167, 2021 03 05.
Article in English | MEDLINE | ID: mdl-33512066

ABSTRACT

Severe α1 -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α1 -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α1 -antitrypsin. The lead compound blocks Z α1 -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α1 -antitrypsin threefold in an iPSC model of disease. Crystallographic and biophysical analyses demonstrate that GSK716 and related molecules bind to a cryptic binding pocket, negate the local effects of the Z mutation and stabilise the bound state against progression along the polymerisation pathway. Oral dosing of transgenic mice at 100 mg/kg three times a day for 20 days increased the secretion of Z α1 -antitrypsin into the plasma by sevenfold. There was no observable clearance of hepatic inclusions with respect to controls over the same time period. This study provides proof of principle that "mutation ameliorating" small molecules can block the aberrant polymerisation that underlies Z α1 -antitrypsin deficiency.


Subject(s)
alpha 1-Antitrypsin Deficiency , alpha 1-Antitrypsin , Animals , Endoplasmic Reticulum , Hepatocytes , Mice , alpha 1-Antitrypsin/genetics
5.
Nat Commun ; 11(1): 6371, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33311470

ABSTRACT

Genetic mutations predispose the serine protease inhibitor α1-antitrypsin to misfolding and polymerisation within hepatocytes, causing liver disease and chronic obstructive pulmonary disease. This misfolding occurs via a transiently populated intermediate state, but our structural understanding of this process is limited by the instability of recombinant α1-antitrypsin variants in solution. Here we apply NMR spectroscopy to patient-derived samples of α1-antitrypsin at natural isotopic abundance to investigate the consequences of disease-causing mutations, and observe widespread chemical shift perturbations for methyl groups in Z AAT (E342K). By comparison with perturbations induced by binding of a small-molecule inhibitor of misfolding we conclude that they arise from rapid exchange between the native conformation and a well-populated intermediate state. The observation that this intermediate is stabilised by inhibitor binding suggests a paradoxical approach to the targeted treatment of protein misfolding disorders, wherein the stabilisation of disease-associated states provides selectivity while inhibiting further transitions along misfolding pathways.


Subject(s)
Magnetic Resonance Spectroscopy/methods , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin Deficiency/metabolism , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/genetics , alpha 1-Antitrypsin/metabolism , Genetic Predisposition to Disease/genetics , Glycoproteins , Humans , Models, Molecular , Molecular Medicine , Mutation , Protein Aggregation, Pathological , Protein Conformation , Recombinant Proteins , Serine Proteinase Inhibitors/chemistry
6.
Sci Adv ; 6(43)2020 10.
Article in English | MEDLINE | ID: mdl-33087346

ABSTRACT

The serpinopathies are among a diverse set of conformational diseases that involve the aberrant self-association of proteins into ordered aggregates. α1-Antitrypsin deficiency is the archetypal serpinopathy and results from the formation and deposition of mutant forms of α1-antitrypsin as "polymer" chains in liver tissue. No detailed structural analysis has been performed of this material. Moreover, there is little information on the relevance of well-studied artificially induced polymers to these disease-associated molecules. We have isolated polymers from the liver tissue of Z α1-antitrypsin homozygotes (E342K) who have undergone transplantation, labeled them using a Fab fragment, and performed single-particle analysis of negative-stain electron micrographs. The data show structural equivalence between heat-induced and ex vivo polymers and that the intersubunit linkage is best explained by a carboxyl-terminal domain swap between molecules of α1-antitrypsin.

7.
JCI Insight ; 5(14)2020 07 23.
Article in English | MEDLINE | ID: mdl-32699193

ABSTRACT

The α-1-antitrypsin (or alpha-1-antitrypsin, A1AT) Z variant is the primary cause of severe A1AT deficiency and forms polymeric chains that aggregate in the endoplasmic reticulum of hepatocytes. Around 2%-5% of Europeans are heterozygous for the Z and WT M allele, and there is evidence of increased risk of liver disease when compared with MM A1AT individuals. We have shown that Z and M A1AT can copolymerize in cell models, but there has been no direct observation of heteropolymer formation in vivo. To this end, we developed a monoclonal antibody (mAb2H2) that specifically binds to M in preference to Z A1AT, localized its epitope using crystallography to a region perturbed by the Z (Glu342Lys) substitution, and used Fab fragments to label polymers isolated from an MZ heterozygote liver explant. Glu342 is critical to the affinity of mAb2H2, since it also recognized the mild S-deficiency variant (Glu264Val) present in circulating polymers from SZ heterozygotes. Negative-stain electron microscopy of the Fab2H2-labeled liver polymers revealed that M comprises around 6% of the polymer subunits in the MZ liver sample. These data demonstrate that Z A1AT can form heteropolymers with polymerization-inert variants in vivo with implications for liver disease in heterozygous individuals.


Subject(s)
Liver Cirrhosis/genetics , Protein Aggregates/genetics , alpha 1-Antitrypsin Deficiency/genetics , alpha 1-Antitrypsin/genetics , Alleles , Catalytic Domain/drug effects , Crystallography , Endoplasmic Reticulum/genetics , Endoplasmic Reticulum/pathology , Epitopes/genetics , Epitopes/immunology , Genetic Variation/genetics , Hepatocytes/metabolism , Hepatocytes/pathology , Humans , Liver/metabolism , Liver/pathology , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Protein Aggregates/immunology , Protein Conformation , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/ultrastructure , alpha 1-Antitrypsin Deficiency/immunology , alpha 1-Antitrypsin Deficiency/pathology
8.
J Cell Sci ; 131(4)2018 02 14.
Article in English | MEDLINE | ID: mdl-29361539

ABSTRACT

Glycans are inherently heterogeneous, yet glycosylation is essential in eukaryotes, and glycans show characteristic cell type-dependent distributions. By using an immortalized human mesenchymal stromal cell (MSC) line model, we show that both N- and O-glycan processing in the Golgi functionally modulates early steps of osteogenic differentiation. We found that inhibiting O-glycan processing in the Golgi prior to the start of osteogenesis inhibited the mineralization capacity of the formed osteoblasts 3 weeks later. In contrast, inhibition of N-glycan processing in MSCs altered differentiation to enhance the mineralization capacity of the osteoblasts. The effect of N-glycans on MSC differentiation was mediated by the phosphoinositide-3-kinase (PI3K)/Akt pathway owing to reduced Akt phosphorylation. Interestingly, by inhibiting PI3K during the first 2 days of osteogenesis, we were able to phenocopy the effect of inhibiting N-glycan processing. Thus, glycan processing provides another layer of regulation that can modulate the functional outcome of differentiation. Glycan processing can thereby offer a novel set of targets for many therapeutically attractive processes.


Subject(s)
Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Osteogenesis/genetics , Polysaccharides/metabolism , Calcification, Physiologic/genetics , Cell Line , Glycosylation , Golgi Apparatus/metabolism , Humans , Mesenchymal Stem Cells/cytology , Osteoblasts/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism
9.
Biochem J ; 473(19): 3269-90, 2016 10 01.
Article in English | MEDLINE | ID: mdl-27407165

ABSTRACT

Serpins are important regulators of proteolytic pathways with an antiprotease activity that involves a conformational transition from a metastable to a hyperstable state. Certain mutations permit the transition to occur in the absence of a protease; when associated with an intermolecular interaction, this yields linear polymers of hyperstable serpin molecules, which accumulate at the site of synthesis. This is the basis of many pathologies termed the serpinopathies. We have previously identified a monoclonal antibody (mAb4B12) that, in single-chain form, blocks α1-antitrypsin (α1-AT) polymerisation in cells. Here, we describe the structural basis for this activity. The mAb4B12 epitope was found to encompass residues Glu32, Glu39 and His43 on helix A and Leu306 on helix I. This is not a region typically associated with the serpin mechanism of conformational change, and correspondingly the epitope was present in all tested structural forms of the protein. Antibody binding rendered ß-sheet A - on the opposite face of the molecule - more liable to adopt an 'open' state, mediated by changes distal to the breach region and proximal to helix F. The allosteric propagation of induced changes through the molecule was evidenced by an increased rate of peptide incorporation and destabilisation of a preformed serpin-enzyme complex following mAb4B12 binding. These data suggest that prematurely shifting the ß-sheet A equilibrium towards the 'open' state out of sequence with other changes suppresses polymer formation. This work identifies a region potentially exploitable for a rational design of ligands that is able to dynamically influence α1-AT polymerisation.


Subject(s)
Serpins/metabolism , Allosteric Regulation , Antibodies, Monoclonal/chemistry , Electron Spin Resonance Spectroscopy , Enzyme-Linked Immunosorbent Assay , Fluorescence Resonance Energy Transfer , Mutagenesis, Site-Directed , Polymerization , Temperature , alpha 1-Antitrypsin/chemistry , alpha 1-Antitrypsin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...