Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Biol Ther ; 25(1): 2350249, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38722731

ABSTRACT

Head and Neck Squamous Cell Carcinoma (HNSCC) comprises a diverse group of tumors with variable treatment response and prognosis. The tumor microenvironment (TME), which includes microbiome and immune cells, can impact outcomes. Here, we sought to relate the presence of specific microbes, gene expression, and tumor immune infiltration using tumor transcriptomics from The Cancer Genome Atlas (TCGA) and associate these with overall survival (OS). RNA sequencing (RNAseq) from HNSCC tumors in TCGA was processed through the exogenous sequences in tumors and immune cells (exotic) pipeline to identify and quantify low-abundance microbes. The detection of the Papillomaviridae family of viruses assessed HPV status. All statistical analyses were performed using R. A total of 499 RNAseq samples from TCGA were analyzed. HPV was detected in 111 samples (22%), most commonly Alphapapillomavirus 9 (90.1%). The presence of Alphapapillomavirus 9 was associated with improved OS [HR = 0.60 (95%CI: 0.40-0.89, p = .01)]. Among other microbes, Yersinia pseudotuberculosis was associated with the worst survival (HR = 3.88; p = .008), while Pseudomonas viridiflava had the best survival (HR = 0.05; p = .036). Microbial species found more abundant in HPV- tumors included several gram-negative anaerobes. HPV- tumors had a significantly higher abundance of M0 (p < .001) and M2 macrophages (p = .035), while HPV+ tumors had more T regulatory cells (p < .001) and CD8+ T-cells (p < .001). We identified microbes in HNSCC tumor samples significantly associated with survival. A greater abundance of certain anaerobic microbes was seen in HPV tumors and pro-tumorigenic macrophages. These findings suggest that TME can be used to predict patient outcomes and may help identify mechanisms of resistance to systemic therapies.


Subject(s)
Head and Neck Neoplasms , Microbiota , Papillomavirus Infections , Squamous Cell Carcinoma of Head and Neck , Tumor Microenvironment , Humans , Head and Neck Neoplasms/virology , Head and Neck Neoplasms/mortality , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/microbiology , Head and Neck Neoplasms/pathology , Head and Neck Neoplasms/genetics , Female , Papillomavirus Infections/virology , Papillomavirus Infections/immunology , Papillomavirus Infections/complications , Male , Microbiota/genetics , Tumor Microenvironment/immunology , Squamous Cell Carcinoma of Head and Neck/virology , Squamous Cell Carcinoma of Head and Neck/microbiology , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/mortality , Prognosis , Middle Aged , Papillomaviridae/genetics , Aged
2.
Cancer Res Commun ; 3(11): 2375-2385, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37850841

ABSTRACT

The microbiome affects cancer, from carcinogenesis to response to treatments. New evidence suggests that microbes are also present in many tumors, though the scope of how they affect tumor biology and clinical outcomes is in its early stages. A broad survey of tumor microbiome samples across several independent datasets is needed to identify robust correlations for follow-up testing. We created a tool called {exotic} for "exogenous sequences in tumors and immune cells" to carefully identify the tumor microbiome within RNA sequencing (RNA-seq) datasets. We applied it to samples collected through the Oncology Research Information Exchange Network (ORIEN) and The Cancer Genome Atlas. We showed how the processing removes contaminants and batch effects to yield microbe abundances consistent with non-high-throughput sequencing-based approaches and DNA-amplicon-based measurements of a subset of the same tumors. We sought to establish clinical relevance by correlating the microbe abundances with various clinical and tumor measurements, such as age and tumor hypoxia. This process leveraged the two datasets and raised up only the concordant (significant and in the same direction) associations. We observed associations with survival and clinical variables that are cancer specific and relatively few associations with immune composition. Finally, we explored potential mechanisms by which microbes and tumors may interact using a network-based approach. Alistipes, a common gut commensal, showed the highest network degree centrality and was associated with genes related to metabolism and inflammation. The {exotic} tool can support the discovery of microbes in tumors in a way that leverages the many existing and growing RNA-seq datasets. SIGNIFICANCE: The intrinsic tumor microbiome holds great potential for its ability to predict various aspects of cancer biology and as a target for rational manipulation. Here, we describe a tool to quantify microbes from within tumor RNA-seq and apply it to two independent datasets. We show new associations with clinical variables that justify biomarker uses and more experimentation into the mechanisms by which tumor microbiomes affect cancer outcomes.


Subject(s)
Microbiota , Neoplasms , Humans , RNA-Seq , Neoplasms/genetics , Microbiota/genetics , Sequence Analysis, RNA , RNA, Neoplasm
SELECTION OF CITATIONS
SEARCH DETAIL
...