Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(1): 553-563, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36350418

ABSTRACT

BACKGROUND: Ankylosing spondylitis (AS) is a progressive inflammatory disease. Our primary objective was to explore the role of miR-155 and its targeted factors in AS pathogenesis. METHODS AND RESULTS: PBMCs were isolated from 30 AS patients and 30 healthy individuals using the Ficoll-hypaque isolation approach. The expression of miR-155 and its associated targets, including Suppressor Of Cytokine Signaling 3 (SOCS3), STAT3, and IL-21, were determined using qT-qPCR. Then, PBMCs were cultured, and the effect of miR-155, SOCS3 siRNA (to suppress its expression), pEFSOCS3 (enforced expression), and their combination were investigated by qRT-PCR and western blotting. We also treated the cultured PBMCs with Brefeldin A, a potent inhibitor of cytokine secretion, to determine its effect on IL-21 expression and secretion. In addition, the association between miR-155 and patients' clinicopathological features was examined. The results showed that miR-155, IL-21, and STAT3 were increased in patients with AS, while SOCS3 had decreasing expression trend. It was also determined that miR-155 alleviates SOCS3 expression and increases IL-21 and STAT3 expression; it had a prominent effect when combined with SOCS3 siRNA. Besides, we showed that simultaneous transfection of miR-155 and pEFSOCS3 had no significant effect on IL-21 and STAT3 expression, revealing that miR-155 could alleviate the enforced expression of SOCS3. It was also proven that Brefledine A led to IL-21 up-regulation or accumulation while relieving its secretion. Also, a significant correlation between miR-155 and pathological features of AS patients was found. CONCLUSION: miR-155 acts as a potential prognostic and diagnostic biomarker. Its up-regulation leads to the down-regulation of SOCS3 and increased expression of IL-21 and STAT3 as characteristic of TH-17 lymphocytes, leading to worsening inflammatory conditions in patients with AS.


Subject(s)
MicroRNAs , Spondylitis, Ankylosing , Humans , Spondylitis, Ankylosing/diagnosis , Spondylitis, Ankylosing/genetics , Prognosis , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Signal Transduction , Suppressor of Cytokine Signaling Proteins/genetics , MicroRNAs/metabolism , RNA, Small Interfering/pharmacology , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism
2.
Cancer Cell Int ; 22(1): 401, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36510217

ABSTRACT

Programmed death-1 (PD-1)/programmed death-ligand 1 (PD-L1) blockade therapy has become a game-changing therapeutic approach revolutionizing the treatment setting of human malignancies, such as renal cell carcinoma (RCC). Despite the remarkable clinical activity of anti-PD-1 or anti-PD-L1 monoclonal antibodies, only a small portion of patients exhibit a positive response to PD-1/PD-L1 blockade therapy, and the primary or acquired resistance might ultimately favor cancer development in patients with clinical responses. In light of this, recent reports have signified that the addition of other therapeutic modalities to PD-1/PD-L1 blockade therapy might improve clinical responses in advanced RCC patients. Until, combination therapy with PD-1/PD-L1 blockade therapy plus cytotoxic T lymphocyte antigen 4 (CTLA-4) inhibitor (ipilimumab) or various vascular endothelial growth factor receptors (VEGFRs) inhibitors axitinib, such as axitinib and cabozantinib, has been approved by the United States Food and Drug Administration (FDA) as first-line treatment for metastatic RCC. In the present review, we have focused on the therapeutic benefits of the PD-1/PD-L1 blockade therapy as a single agent or in combination with other conventional or innovative targeted therapies in RCC patients. We also offer a glimpse into the well-determined prognostic factor associated with the clinical response of RCC patients to PD-1/PD-L1 blockade therapy.

3.
Pathol Res Pract ; 236: 153982, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35779293

ABSTRACT

Pancreatic duct adenocarcinoma, commonly known as pancreatic cancer (PC), is a cancer-related cause of death due to delayed diagnosis, metastasis, and drug resistance. Patients with PC suffer from incorrect responses to chemotherapy due to inherent and acquired chemical resistance. Numerous studies have shown the mechanism of the effect of chemoresistance on PC, such as genetic and epigenetic changes or the elucidation of signaling pathways. In this regard, microRNAs (miRNAs) have been identified as essential modulators of gene expression in various cellular functions, including chemoresistance. Thus, identifying the underlying link between microRNAs and PC chemoresistance helps determine the exact pathogenesis of PC. This study aims to classify miRNAs and signaling pathways related to PC chemoresistance, suggesting new therapeutic approaches to overcome PC chemoresistance.


Subject(s)
MicroRNAs , Pancreatic Neoplasms , Cell Line, Tumor , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic/genetics , Humans , MicroRNAs/genetics , MicroRNAs/metabolism , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms
4.
Cell Mol Biol Lett ; 27(1): 56, 2022 Jul 16.
Article in English | MEDLINE | ID: mdl-35842587

ABSTRACT

Recently, mesenchymal stromal cell (MSC)-based therapy has become an appreciated therapeutic approach in the context of neurodegenerative disease therapy. Accordingly, a myriad of studies in animal models and also some clinical trials have evinced the safety, feasibility, and efficacy of MSC transplantation in neurodegenerative conditions, most importantly in Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington's disease (HD). The MSC-mediated desired effect is mainly a result of secretion of immunomodulatory factors in association with release of various neurotrophic factors (NTFs), such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Thanks to the secretion of protein-degrading molecules, MSC therapy mainly brings about the degradation of pathogenic protein aggregates, which is a typical appearance of chronic neurodegenerative disease. Such molecules, in turn, diminish neuroinflammation and simultaneously enable neuroprotection, thereby alleviating disease pathological symptoms and leading to cognitive and functional recovery. Also, MSC differentiation into neural-like cells in vivo has partially been evidenced. Herein, we focus on the therapeutic merits of MSCs and also their derivative exosome as an innovative cell-free approach in AD, HD, PD, and ALS conditions. Also, we give a brief glimpse into novel approaches to potentiate MSC-induced therapeutic merits in such disorders, most importantly, administration of preconditioned MSCs.


Subject(s)
Amyotrophic Lateral Sclerosis , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/therapy , Animals , Mesenchymal Stem Cells/metabolism , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/therapy
SELECTION OF CITATIONS
SEARCH DETAIL