Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Life (Basel) ; 13(10)2023 Oct 17.
Article in English | MEDLINE | ID: mdl-37895454

ABSTRACT

BACKGROUND: The femoral neck system (FNS) was introduced as a minimally invasive fixation device for managing femoral neck fractures. OBJECTIVE: To compare radiographic, clinical, and patient-reported outcome measures (PROMs) of femoral neck fracture patients following FNS compared to dynamic hip screw (DHS) implantation combined with an anti-rotational screw. METHODS: Patients who underwent closed reduction and internal fixation of a femoral neck fracture between 2020 and 2022 were retrospectively included. We measured leg length, femoral offset, and centrum-collum-diaphyseal (CCD) angle in plain radiographs. Scar length, Harris Hip Score, short-form health survey 36-item score (SF-36), and Numeric Rating Scale (NRS) were assessed during follow-up visits. RESULTS: We included 43 patients (22 females) with a median age of 66 (IQR 57, 75). In both groups, leg length differences between the injured and the contralateral side increased, and femoral offset and CCD angle differences were maintained over time. FNS patients had shorter scars and reported fewer emotional problems and more energy. There were no differences between groups regarding the remaining SF-36 sub-scores, Harris Hip Score, and NRS. CONCLUSIONS: The FNS allows for a comparable leg length, femoral offset, and CCD angle reconstruction while achieving similarly high functional and global health scores to the DHS.

2.
J Phys Chem B ; 122(49): 11373-11380, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30179494

ABSTRACT

Hsp90 is an essential molecular chaperone, which has to be in a dimeric form for its correct function. While the affinity of the dimer has previously been measured, little is known about how it associates and dissociates and the factors that influence this. We perform an in-depth single molecule characterization of the C-terminal association and dissociation of Hsp90. We find more than one dissociation rate, indicating that the dimer has a stable and an unstable state. Furthermore, we find that the stability of the C-terminal association is dependent on the presence of ATP, despite the C-terminal dimerization interface being distal to the catalytic site.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , Nucleotides/chemistry , Adenosine Triphosphatases/chemistry , Cloning, Molecular , Dimerization , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Optical Tweezers , Protein Folding , Protein Stability
3.
Structure ; 26(1): 96-105.e4, 2018 01 02.
Article in English | MEDLINE | ID: mdl-29276035

ABSTRACT

The heat-shock protein 90 (Hsp90) molecular chaperones are highly conserved across species. However, their dynamic properties can vary significantly from organism to organism. Here we used high-precision optical tweezers to analyze the mechanical properties and folding of different Hsp90 orthologs, namely bacterial Hsp90 (HtpG) and Hsp90 from the endoplasmic reticulum (ER) (Grp94), as well as from the cytosol of the eukaryotic cell (Hsp82). We find that the folding rates of Hsp82 and HtpG are similar, while the folding of Grp94 is slowed down by misfolding of the N-terminal domain. Furthermore, the domain interactions mediated by the charged linker, involved in the conformational cycles of all three orthologs, are much stronger for Grp94 than for Hsp82, keeping the N-terminal domain and the middle domain in close proximity. Thus, the ER resident Hsp90 ortholog differs from the cytosolic counterparts in basic functionally relevant structural properties.


Subject(s)
Cytosol/chemistry , Endoplasmic Reticulum/chemistry , Escherichia coli Proteins/chemistry , HSP70 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/chemistry , Membrane Proteins/chemistry , Saccharomyces cerevisiae Proteins/chemistry , Amino Acid Sequence , Animals , Cloning, Molecular , Crystallography, X-Ray , Cytosol/metabolism , Dogs , Endoplasmic Reticulum/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , HSP90 Heat-Shock Proteins/genetics , HSP90 Heat-Shock Proteins/metabolism , Kinetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Optical Tweezers , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Folding , Protein Interaction Domains and Motifs , Protein Multimerization , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Spectrum Analysis/methods , Thermodynamics
4.
Proc Natl Acad Sci U S A ; 113(5): 1232-7, 2016 Feb 02.
Article in English | MEDLINE | ID: mdl-26787848

ABSTRACT

Folding of small proteins often occurs in a two-state manner and is well understood both experimentally and theoretically. However, many proteins are much larger and often populate misfolded states, complicating their folding process significantly. Here we study the complete folding and assembly process of the 1,418 amino acid, dimeric chaperone Hsp90 using single-molecule optical tweezers. Although the isolated C-terminal domain shows two-state folding, we find that the isolated N-terminal as well as the middle domain populate ensembles of fast-forming, misfolded states. These intradomain misfolds slow down folding by an order of magnitude. Modeling folding as a competition between productive and misfolding pathways allows us to fully describe the folding kinetics. Beyond intradomain misfolding, folding of the full-length protein is further slowed by the formation of interdomain misfolds, suggesting that with growing chain lengths, such misfolds will dominate folding kinetics. Interestingly, we find that small stretching forces applied to the chain can accelerate folding by preventing the formation of cross-domain misfolding intermediates by leading the protein along productive pathways to the native state. The same effect is achieved by cotranslational folding at the ribosome in vivo.


Subject(s)
HSP90 Heat-Shock Proteins/chemistry , Protein Folding , Dimerization , Kinetics
5.
Proc Natl Acad Sci U S A ; 112(49): 15125-9, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26598678

ABSTRACT

The search for simple principles underlying the complex architecture of ecological communities such as forests still challenges ecological theorists. We use tree diameter distributions--fundamental for deriving other forest attributes--to describe the structure of tropical forests. Here we argue that tree diameter distributions of natural tropical forests can be explained by stochastic packing of tree crowns representing a forest crown packing system: a method usually used in physics or chemistry. We demonstrate that tree diameter distributions emerge accurately from a surprisingly simple set of principles that include site-specific tree allometries, random placement of trees, competition for space, and mortality. The simple static model also successfully predicted the canopy structure, revealing that most trees in our two studied forests grow up to 30-50 m in height and that the highest packing density of about 60% is reached between the 25- and 40-m height layer. Our approach is an important step toward identifying a minimal set of processes responsible for generating the spatial structure of tropical forests.


Subject(s)
Forests , Tropical Climate
6.
Proc Natl Acad Sci U S A ; 111(50): 17881-6, 2014 Dec 16.
Article in English | MEDLINE | ID: mdl-25468961

ABSTRACT

The heat shock protein 90 (Hsp90) is a dimeric molecular chaperone essential in numerous cellular processes. Its three domains (N, M, and C) are connected via linkers that allow the rearrangement of domains during Hsp90's chaperone cycle. A unique linker, called charged linker (CL), connects the N- and M-domain of Hsp90. We used an integrated approach, combining single-molecule techniques and biochemical and in vivo methods, to study the unresolved structure and function of this region. Here we show that the CL facilitates intramolecular rearrangements on the milliseconds timescale between a state in which the N-domain is docked to the M-domain and a state in which the N-domain is more flexible. The docked conformation is stabilized by 1.1 kBT (2.7 kJ/mol) through binding of the CL to the N-domain of Hsp90. Docking and undocking of the CL affects the much slower intermolecular domain movement and Hsp90's chaperone cycle governing client activation, cell viability, and stress tolerance.


Subject(s)
Cross-Linking Reagents/chemistry , HSP90 Heat-Shock Proteins/chemistry , HSP90 Heat-Shock Proteins/metabolism , Models, Molecular , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Blotting, Western , Electrophoresis, Polyacrylamide Gel , Fluorescence , Fluorescence Resonance Energy Transfer , Immunoblotting , Optical Tweezers , Protein Structure, Tertiary , Ultracentrifugation
7.
Mol Pharm ; 9(6): 1628-37, 2012 Jun 04.
Article in English | MEDLINE | ID: mdl-22587679

ABSTRACT

The absorption of commonly used ferrous iron salts from intestinal segments at neutral to slightly alkaline pH is low, mainly because soluble ferrous iron is easily oxidized to poorly soluble ferric iron and because ferrous iron, but not ferric iron, is carried by the divalent metal transporter DMT-1. Moreover, ferrous iron frequently causes gastrointestinal side effects. Iron hydroxide nanoparticles with neutral and hydrophilic carbohydrate shells are alternatively used to ferrous salts. In these formulations gastrointestinal side effects are rare because hundreds of ferric iron atoms are safely packed in nanoscaled cores surrounded by the solubilizing shell; nevertheless, iron bioavailability is even worse compared to ferrous salts. In this study the cell uptake of iron hydroxide and iron oxide nanoparticles (FeONP) with negatively charged shells of different chemical types and sizes was compared to the uptake of those with neutral hydrophilic shells, ferrous sulfate and ferric chloride. The nanoparticle uptake was measured in Caco-2 cells with the iron detecting ferrozine method and visualized by transmission electron microscopy. The toxicity was evaluated using the MTT assay. For nanoparticles with a negatively charged shell the iron uptake was about 40 times higher compared to those with neutral hydrophilic carbohydrate shell or ferric chloride and in the same range as ferrous sulfate. However, in contrast to ferrous sulfate, nanoparticles with negatively charged shells showed no toxicity. Two different uptake mechanisms were proposed: diffusion for hydroxide nanoparticles with neutral hydrophilic shell and adsorptive endocytosis for nanoparticles with negatively charged shells. It needs to be determined whether iron hydroxide nanoparticles with negatively charged shells also show improved bioavailability in iron-deficient patients compared to iron hydroxide nanoparticles with a neutral hydrophilic shell, which exist in the market today.


Subject(s)
Ferric Compounds/chemistry , Nanoparticles/chemistry , Caco-2 Cells , Chlorides/chemistry , Humans , Microscopy, Electron, Transmission , Nanoparticles/ultrastructure
8.
J Pharm Pharmacol ; 63(12): 1522-30, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22060282

ABSTRACT

OBJECTIVES: The absorption of commonly used ferrous iron salts from intestinal segments at neutral to slightly alkaline pH is low, mainly because soluble ferrous iron is easily oxidized to poorly soluble ferric iron and ferrous iron but not ferric iron is carried by the divalent metal transporter DMT-1. Moreover, ferrous iron frequently causes gastrointestinal side effects. In iron(III)-hydroxide nanoparticles hundreds of ferric iron atoms are safely packed in nanoscaled cores surrounded by a solubilising carbohydrate shell, yet bioavailability from such particles is insufficient when compared with ferrous salts. To increase their intestinal uptake iron(III)-hydroxide nanoparticles were coupled in this study with the protoporphyrin hemin, which undergoes carrier-mediated uptake in the intestine. METHODS: Uptake of iron(III)-hydroxide nanoparticles with hemin covalently coupled by DCC reaction was measured in Caco-2 cells with a colorimetric assay and visualized by transmission electron microscopy. KEY FINDINGS: Nanoparticles were taken up by carrier-mediated transport, since uptake was temperature-dependent and increased with an increasing hemin substitution grade. Furthermore, uptake decreased with an increasing concentration of free hemin, due to competition for carrier-mediated uptake. CONCLUSIONS: Hemin-coupled iron(III)-hydroxide nanoparticles were carried by a heme specific transport system, probably via receptor mediated endocytosis. It can be expected that this system shows improved absorption of iron compared with uncoupled iron(III)-hydroxide nanoparticles, which exist on the market today.


Subject(s)
Ferric Compounds/metabolism , Hemin/metabolism , Nanoparticles , Caco-2 Cells , Colorimetry , Coloring Agents , Culture Media , Ferric Compounds/chemistry , Ferrozine , Hemin/chemistry , Humans , Iron Chelating Agents , Microscopy, Electron, Transmission , Particle Size , Scattering, Radiation , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Tetrazolium Salts , Thiazoles
9.
Eur J Pharm Biopharm ; 78(3): 480-91, 2011 Aug.
Article in English | MEDLINE | ID: mdl-21439379

ABSTRACT

The treatment of iron deficiency anemia with polynuclear iron formulations is an established therapy in patients with chronic kidney disease but also in other disease areas like gastroenterology, cardiology, oncology, pre/post operatively and obstetrics' and gynecology. Parenteral iron formulations represent colloidal systems in the lower nanometer size range which have traditionally been shown to consist of an iron core surrounded by a carbohydrate shell. In this publication, we for the first time describe the novel matrix structure of iron isomaltoside 1000 which differs from the traditional picture of an iron core surrounded by a carbohydrate. Despite some structural similarities between the different iron formulations, the products differ significantly in their physicochemical properties such as particle size, zeta potential, free and labile iron content, and release of iron in serum. This study compares the physiochemical properties of iron isomaltoside 1000 (Monofer) with the currently available intravenous iron preparations and relates them to their biopharmaceutical properties and their approved clinical applications. The investigated products encompass low molecular weight iron dextran (CosmoFer), sodium ferric gluconate (Ferrlecit), iron sucrose (Venofer), iron carboxymaltose (Ferinject/Injectafer), and ferumoxytol (Feraheme) which are compared to iron isomaltoside 1000 (Monofer). It is shown that significant and clinically relevant differences exist between sodium ferric gluconate and iron sucrose as labile iron formulations and iron dextran, iron carboxymaltose, ferumoxytol, and iron isomaltoside 1000 as stable polynuclear formulations. The differences exist in terms of their immunogenic potential, safety, and convenience of use, the latter being expressed by the opportunity for high single-dose administration and short infusion times. Monofer is a new parenteral iron product with a very low immunogenic potential and a very low content of labile and free iron. This enables Monofer, as the only IV iron formulation, to be administered as a rapid high dose infusion in doses exceeding 1000 mg without the application of a test dose. This offers considerable dose flexibility, including the possibility of providing full iron repletion in a single infusion (one-dose iron repletion).


Subject(s)
Disaccharides/chemistry , Drug Delivery Systems , Ferric Compounds/chemistry , Vitamins/chemistry , Chemical Phenomena , Disaccharides/administration & dosage , Disaccharides/pharmacology , Disaccharides/therapeutic use , Drug Compounding , Ferric Compounds/administration & dosage , Ferric Compounds/pharmacology , Ferric Compounds/therapeutic use , Humans , Hydrolysis , Infusions, Intravenous , Molecular Structure , Molecular Weight , Particle Size , Vitamins/administration & dosage , Vitamins/pharmacology , Vitamins/therapeutic use
10.
Bioorg Med Chem Lett ; 20(18): 5454-8, 2010 Sep 15.
Article in English | MEDLINE | ID: mdl-20709549

ABSTRACT

In the context of molecular imaging, various polymers based on the clinically approved N-(2-hydroxypropyl)-methacrylamide (HPMA) have been radio-labeled using longer-living positron emitters 72As t1/2=26 h or 74As t1/2=17.8 d. This approach may lead to non-invasive determination of the long-term in vivo fate of polymers by PET (positron emission tomography). Presumably, the radio label itself will not strongly influence the polymer structure due to the fact that the used nuclide binds to already existing thiol moieties within the polymer structure. Thus, the use of additional charges or bulky groups can be avoided.


Subject(s)
Acrylamides/chemistry , Arsenic/chemistry , Positron-Emission Tomography/methods , Radioisotopes/chemistry , Acrylamides/chemical synthesis , Time Factors
11.
Biomacromolecules ; 10(7): 1697-703, 2009 Jul 13.
Article in English | MEDLINE | ID: mdl-19425549

ABSTRACT

During the last decades polymer-based nanomedicine has turned out to be a promising tool in modern pharmaceutics. The following article describes the synthesis of well-defined random and block copolymers by RAFT polymerization with potential medical application. The polymers have been labeled with the positron-emitting nuclide fluorine-18. The polymeric structures are based on the biocompatible N-(2-hydroxypropyl)-methacrylamide (HPMA). To achieve these structures, functional reactive ester polymers with a molecular weight within the range of 25,000-110,000 g/mol were aminolyzed by 2-hydroxypropylamine and tyramine (3%) to form (18)F-labelable HPMA-polymer precursors. The labeling procedure of the phenolic tyramine moieties via the secondary labeling synthon 2-[(18)F]fluoroethyl-1-tosylate ([(18)F]FETos) provided radiochemical fluoroalkylation yields of ∼80% for block copolymers and >50% for random polymer architectures within a synthesis time of 10 min and a reaction temperature of 120 °C. Total synthesis time including synthon synthesis, (18)F-labeling, and final purification via size exclusion chromatography took less than 90 min and yielded stable (18)F-labeled HPMA structures in isotonic buffer solution. Any decomposition could be detected within 2 h. To determine the in vivo fate of (18)F-labeled HPMA polymers, preliminary small animal positron emission tomography (PET) experiments were performed in healthy rats, demonstrating the renal clearance of low molecular weight polymers. Furthermore, low metabolism rates could be detected in urine as well as in the blood. Thus, we expect this new strategy for radioactive labeling of polymers as a promising approach for in vivo PET studies.


Subject(s)
Fluorine Radioisotopes , Isotope Labeling/methods , Polymers/chemistry , Positron-Emission Tomography/methods , Acrylamides/chemistry , Animals , Biotransformation , Polymerization , Polymers/chemical synthesis , Polymers/metabolism , Rats
12.
J Nucl Med ; 48(10): 1741-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17873136

ABSTRACT

UNLABELLED: The (68)Ge/(68)Ga generator provides an excellent source of positron-emitting (68)Ga. However, newly available "ionic" (68)Ge/(68)Ga radionuclide generators are not necessarily optimized for the synthesis of (68)Ga-labeled radiopharmaceuticals. The eluates have rather large volumes, a high concentration of H(+) (pH of 1), a breakthrough of (68)Ge, increasing with time or frequency of use, and impurities such as stable Zn(II) generated by the decay of (68)Ga, Ti(IV) as a constituent of the column material, and Fe(III) as a general impurity. METHODS: We have developed an efficient route for the processing of generator-derived (68)Ga eluates, including the labeling and purification of biomolecules. Preconcentration and purification of the initial generator eluate are performed using a miniaturized column with organic cation-exchanger resin and hydrochloric acid/acetone eluent. The purified fraction was used for the labeling of nanomolar amounts of octreotide derivatives either in pure aqueous solution or in buffers. RESULTS: Using the generator post-eluate processing system, >97% of the initially eluated (68)Ga activity was obtained within 4 min as a 0.4-mL volume of a hydrochloric acid/acetone fraction. The initial amount of (68)Ge(IV) was decreased by a factor of 10(4), whereas initial amounts of Zn(II), Ti(IV), and Fe(III) were reduced by factors of 10(5), 10(2), and 10, respectively. The processed (68)Ga fraction was directly transferred to solutions containing labeling precursors-for example, DOTA-dPhe(1)-Tyr(3)-octreotide (DOTATOC) (DOTA = 1,4,7,10-tetraazacyclododecane-N,N',N'',N'''-tetraacetic acid). Labeling yields of >95% were achieved within 10 min. Overall yields reached 70% at 20 min after generator elution relative to the eluted (68)Ga activity, not corrected for decay. Specific activities of (68)Ga-DOTATOC were 50 MBq/nmol using a standard protocol, reaching 450 MBq/nmol under optimized conditions. CONCLUSION: Processing on a cation-exchanger in hydrochloric acid/acetone media represents an efficient strategy for the concentration and purification of generator-derived (68)Ga(III) eluates. The developed scheme guarantees high yields and safe preparation of injectable (68)Ga-labeled radiopharmaceuticals for routine application and is easy to automate. Thus, it is being successfully used in clinical environments and might contribute to a new direction for clinical PET, which could benefit significantly from the easy and safe availability of the radionuclide generator-derived metallic positron-emitter (68)Ga.


Subject(s)
Gallium Radioisotopes/chemistry , Gallium Radioisotopes/isolation & purification , Isotope Labeling/instrumentation , Isotope Labeling/methods , Equipment Design , Equipment Failure Analysis , Gallium Radioisotopes/standards , Germany , Isotope Labeling/standards , Reference Standards
13.
Electrophoresis ; 28(14): 2424-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17577885

ABSTRACT

The present study describes the application of CZE to investigate the portion of labile iron in the following parenteral formulations: iron gluconate, iron saccharate, and iron dextran. Labile iron was detected as Fe(III)-chelate of EDTA at 246 nm. When EDTA was incubated with the formulations before electrophoresis, labile iron, or chelatable iron, respectively, was detected in all formulations, mostly in iron gluconate and iron saccharate. It was observed that the amount of iron released is time- and pH-dependent. In contrast, when EDTA was separately injected before the formulation sharp peaks of the Fe(III)-chelate were detected only after injection of iron gluconate. This type of labile iron can be described as "electrophoretically free" iron. CE provides thus a new method to characterize potential toxic, labile iron in parenteral iron formulations.


Subject(s)
Electrophoresis, Capillary/methods , Iron/analysis , Iron/toxicity , Rehydration Solutions/chemistry , Colloids/chemistry , Edetic Acid/chemistry , Fluid Therapy , Gluconates/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL