Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Intell Robot Syst ; 103(1): 16, 2021.
Article in English | MEDLINE | ID: mdl-34456505

ABSTRACT

Unmanned Aerial Systems (UAS) are becoming increasingly popular in the public safety sector. While some applications have so far only been envisioned, others are regularly performed in real-life scenarios. Many more fall in between and are actively investigated by research and commercial communities alike. This study reviews the maturity levels, or "market-readiness", of public safety applications for UAS. As individual assessments of all applications suggested in the literature are infeasible due to their sheer number, we propose a novel set of application categories: Remote Sensing, Mapping, Monitoring, Human-drone Interaction, Flying Ad-hoc Networks, Transportation, and Counter UAV Systems. Each category's maturity is assessed through a literature review of contained applications, using the metric of Application Readiness Levels (ARLs). Relevant aspects such as the environmental complexity and available mission time of addressed scenarios are taken into account. Following the analysis, we infer that improvements in autonomy and software reliability are the most promising research areas for increasing the usefulness and acceptance of UAS in the public safety domain.

2.
Nano Lett ; 19(7): 4448-4457, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31141672

ABSTRACT

While the properties of wurtzite GaAs have been extensively studied during the past decade, little is known about the influence of the crystal polytype on ternary (In,Ga)As quantum well structures. We address this question with a unique combination of correlated, spatially resolved measurement techniques on core-shell nanowires that contain extended segments of both the zincblende and wurtzite polytypes. Cathodoluminescence hyperspectral imaging reveals a blue-shift of the quantum well emission energy by 75 ± 15 meV in the wurtzite polytype segment. Nanoprobe X-ray diffraction and atom probe tomography enable k·p calculations for the specific sample geometry to reveal two comparable contributions to this shift. First, there is a 30% drop in In mole fraction going from the zincblende to the wurtzite segment. Second, the quantum well is under compressive strain, which has a much stronger impact on the hole ground state in the wurtzite than in the zincblende segment. Our results highlight the role of the crystal structure in tuning the emission of (In,Ga)As quantum wells and pave the way to exploit the possibilities of three-dimensional band gap engineering in core-shell nanowire heterostructures. At the same time, we have demonstrated an advanced characterization toolkit for the investigation of semiconductor nanostructures.

3.
Adv Mater ; 31(3): e1805645, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30461088

ABSTRACT

Phase coherence in nanostructures is at the heart of a wide range of quantum effects such as Josephson oscillations between exciton-polariton condensates in microcavities, conductance quantization in 1D ballistic transport, or the optical (excitonic) Aharonov-Bohm effect in semiconductor quantum rings. These effects only occur in structures of the highest perfection. The 2D semiconductor heterostructures required for the observation of Aharonov-Bohm oscillations have proved to be particularly demanding, since interface roughness or alloy fluctuations cause a loss of the spatial phase coherence of excitons, and ultimately induce exciton localization. Experimental work in this field has so far relied on either self-assembled ring structures with very limited control of shape and dimension or on lithographically defined nanorings that suffer from the detrimental effects of free surfaces. Here, it is demonstrated that nanowires are an ideal platform for studies of the Aharonov-Bohm effect of neutral and charged excitons, as they facilitate the controlled fabrication of nearly ideal quantum rings by combining all-binary radial heterostructures with axial crystal-phase quantum structures. Thanks to the atomically flat interfaces and the absence of alloy disorder, excitonic phase coherence is preserved even in rings with circumferences as large as 200 nm.

4.
Nanotechnology ; 28(41): 415703, 2017 Oct 13.
Article in English | MEDLINE | ID: mdl-28767046

ABSTRACT

Twin boundaries and boundaries between zincblende (ZB) and wurtzite (WZ) segments of GaAs-related nanowires (NWs) form intrinsic heterointerfaces with essential consequences for the application of such nanomaterials in optoelectronic devices. We show that for GaAs and GaAs/(Al, Ga)As core/shell NWs, crystal twinning along the NW axis can be imaged with a spatial resolution of 10 nm using secondary electrons in a scanning electron microscope (SEM). Changes of the crystal structure from the ZB to the WZ phase have been investigated by electron backscatter diffraction. In addition to these methods, we employ spectrally and spatially resolved cathodoluminescence measurements in the same SEM to study the correlation between the structural and optical properties in single NWs. Two GaAs/AlAs/GaAs core/shell/shell NWs differing significantly in the crystal structure along their axis have been investigated combining these three techniques in order to demonstrate the strength of the employed methodology. Our experiments show that based on commonly available SEM methods, an overview of the structural properties along an entire NW and their impact on the spectral and spatial luminescence distribution can be efficiently obtained providing a quick feedback for the optimization of growth conditions.

5.
Nano Lett ; 17(7): 4255-4260, 2017 07 12.
Article in English | MEDLINE | ID: mdl-28654278

ABSTRACT

Surface energies play a dominant role in the self-assembly of three-dimensional (3D) nanostructures. In this Letter, we show that using surfactants to modify surface energies can provide a means to externally control nanostructure self-assembly, enabling the synthesis of novel hierarchical nanostructures. We explore Bi as a surfactant in the growth of InAs on the {11̅0} sidewall facets of GaAs nanowires. The presence of surface Bi induces the formation of InAs 3D islands by a process resembling the Stranski-Krastanov mechanism, which does not occur in the absence of Bi on these surfaces. The InAs 3D islands nucleate at the corners of the {11̅0} facets above a critical shell thickness and then elongate along ⟨110⟩ directions in the plane of the nanowire sidewalls. Exploiting this growth mechanism, we realize a series of novel hierarchical nanostructures, ranging from InAs quantum dots on single {11̅0} nanowire facets to zigzag-shaped nanorings completely encircling nanowire cores. Photoluminescence spectroscopy and cathodoluminescence spectral line scans reveal that small surfactant-induced InAs 3D islands behave as optically active quantum dots. This work illustrates how surfactants can provide an unprecedented level of external control over nanostructure self-assembly.

6.
Nanotechnology ; 27(45): 455706, 2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27713184

ABSTRACT

Electron irradiation of GaN nanowires in a scanning electron microscope strongly reduces their luminous efficiency as shown by cathodoluminescence imaging and spectroscopy. We demonstrate that this luminescence quenching originates from a combination of charge trapping at already existing surface states and the formation of new surface states induced by the adsorption of C on the nanowire sidewalls. The interplay of these effects leads to a complex temporal evolution of the quenching, which strongly depends on the incident electron dose per area. Time-resolved photoluminescence measurements on electron-irradiated samples reveal that the carbonaceous adlayer affects both the nonradiative and the radiative recombination dynamics.

7.
Nano Lett ; 16(2): 973-80, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26675526

ABSTRACT

The realization of semiconductor structures with stable excitons at room temperature is crucial for the development of excitonics and polaritonics. Quantum confinement has commonly been employed for enhancing excitonic effects in semiconductor heterostructures. Dielectric confinement, which gives rises to much stronger enhancement, has proven to be more difficult to achieve because of the rapid nonradiative surface/interface recombination in hybrid dielectric-semiconductor structures. Here, we demonstrate intense excitonic emission from bare GaN nanowires with diameters down to 6 nm. The large dielectric mismatch between the nanowires and vacuum greatly enhances the Coulomb interaction, with the thinnest nanowires showing the strongest dielectric confinement and the highest radiative efficiency at room temperature. In situ monitoring of the fabrication of these structures allows one to accurately control the degree of dielectric enhancement. These ultrathin nanowires may constitute the basis for the fabrication of advanced low-dimensional structures with an unprecedented degree of confinement.

8.
Nano Lett ; 15(11): 7265-72, 2015 Nov 11.
Article in English | MEDLINE | ID: mdl-26501188

ABSTRACT

GaAs/GaAsBi coaxial multishell nanowires were grown by molecular beam epitaxy. Introducing Bi results in a characteristic nanowire surface morphology with strong roughening. Elemental mappings clearly show the formation of the GaAsBi shell with inhomogeneous Bi distributions within the layer surrounded by the outermost GaAs, having a strong structural disorder at the wire surface. The nanowire exhibits a predominantly ZB structure from the bottom to the middle part. The polytipic WZ structure creates denser twin defects in the upper part than in the bottom and middle parts of the nanowire. We observe room temperature cathodoluminescence from the GaAsBi nanowires with a broad spectral line shape between 1.1 and 1.5 eV, accompanied by multiple peaks. A distinct energy peak at 1.24 eV agrees well with the energy of the reduced GaAsBi alloy band gap by the introduction of 2% Bi. The existence of localized states energetically and spatially dispersed throughout the NW are indicated from the low temperature cathodoluminescence spectra and images, resulting in the observed luminescence spectra characterized by large line widths at low temperatures as well as by the appearance of multiple peaks at high temperatures and for high excitation powers.

9.
Nano Lett ; 14(5): 2604-9, 2014 May 14.
Article in English | MEDLINE | ID: mdl-24678901

ABSTRACT

Efficient infrared light emitters integrated on the mature Si technology platform could lead to on-chip optical interconnects as deemed necessary for future generations of ultrafast processors as well as to nanoanalytical functionality. Toward this goal, we demonstrate the use of GaAs-based nanowires as building blocks for the emission of light with micrometer wavelength that are monolithically integrated on Si substrates. Free-standing (In,Ga)As/GaAs coaxial multishell nanowires were grown catalyst-free on Si(111) by molecular beam epitaxy. The emission properties of single radial quantum wells were studied by cathodoluminescence spectroscopy and correlated with the growth kinetics. Controlling the surface diffusivity of In adatoms along the NW side-walls, we improved the spatial homogeneity of the chemical composition along the nanowire axis and thus obtained a narrow emission spectrum. Finally, we fabricated a light-emitting diode consisting of approximately 10(5) nanowires contacted in parallel through the Si substrate. Room-temperature electroluminescence at 985 nm was demonstrated, proving the great potential of this technology.

10.
Nano Lett ; 13(8): 3607-13, 2013 Aug 14.
Article in English | MEDLINE | ID: mdl-23898953

ABSTRACT

We present a novel approach for the growth of GaAs nanowires (NWs) with controllable number density and diameter, which consists of the combination between droplet epitaxy (DE) and self-assisted NW growth. In our method, GaAs islands are initially formed on Si(111) by DE and, subsequently, GaAs NWs are selectively grown on their top facet, which acts as a nucleation site. By DE, we can successfully tailor the number density and diameter of the template of initial GaAs islands and the same degree of control is transferred to the final GaAs NWs. We show how, by a suitable choice of V/III flux ratio, a single NW can be accommodated on top of each GaAs base island. By transmission electron microscopy, as well as cathodo- and photoluminescence spectroscopy, we confirmed the high structural and optical quality of GaAs NWs grown by our method. We believe that this combined approach can be more generally applied to the fabrication of different homo- or heteroepitaxial NWs, nucleated on the top of predefined islands obtained by DE.

11.
Nanotechnology ; 19(40): 405301, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-21832611

ABSTRACT

We investigated GaN-based heterostructures grown on three-dimensionally patterned Si(111) substrates by metal organic vapour phase epitaxy, with the goal of fabricating well controlled high quality, defect reduced GaN-based nanoLEDs. The high aspect ratios of such pillars minimize the influence of the lattice mismatched substrate and improve the material quality. In contrast to other approaches, we employed deep etched silicon substrates to achieve a controlled pillar growth. For that a special low temperature inductively coupled plasma etching process has been developed. InGaN/GaN multi-quantum-well structures have been incorporated into the pillars. We found a pronounced dependence of the morphology of the GaN structures on the size and pitch of the pillars. Spatially resolved optical properties of the structures are analysed by cathodoluminescence.

12.
Phys Rev Lett ; 94(14): 146102, 2005 Apr 15.
Article in English | MEDLINE | ID: mdl-15904080

ABSTRACT

Self-assembled columnar AlGaN/GaN nanocavities, with an active region of GaN quantum disks embedded in an AlGaN nanocolumn and cladded by top and bottom AlN/GaN Bragg mirrors, were grown. The nanocavity has no cracks or extended defects, due to the relaxation at the Si interface and to the nanocolumn free-surface to volume ratio. The emission from the active region matched the peak reflectivity by tuning the Al content and the GaN disks thickness. Quantum confinement effects that depend on both the disk thickness and the inhomogeneous strain distribution within the disks are clearly observed.

SELECTION OF CITATIONS
SEARCH DETAIL
...