Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 11: 584471, 2020.
Article in English | MEDLINE | ID: mdl-33154763

ABSTRACT

Mitogen-activated protein kinases (MAPK) play pivotal roles in transducing developmental cues and environmental signals into cellular responses through pathways initiated by MAPK kinase kinases (MAP3K). AtYODA is a MAP3K of Arabidopsis thaliana that controls stomatal development and non-canonical immune responses. Arabidopsis plants overexpressing a constitutively active YODA protein (AtCA-YDA) show broad-spectrum disease resistance and constitutive expression of defensive genes. We tested YDA function in crops immunity by heterologously overexpressing AtCA-YDA in Solanum lycopersicum. We found that these tomato AtCA-YDA plants do not show developmental phenotypes and fitness alterations, except a reduction in stomatal index, as reported in Arabidopsis AtCA-YDA plants. Notably, AtCA-YDA tomato plants show enhanced resistance to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 and constitutive upregulation of defense-associated genes, corroborating the functionality of YDA in tomato immunity. This function was further supported by generating CRISPR/Cas9-edited tomato mutants impaired in the closest orthologs of AtYDA [Solyc08g081210 (SlYDA1) and Solyc03g025360 (SlYDA2)]. Slyda1 and Slyda2 mutants are highly susceptible to P. syringae pv. tomato DC3000 in comparison to wild-type plants but only Slyda2 shows altered stomatal index. These results indicate that tomato orthologs have specialized functions and support that YDA also regulates immune responses in tomato and may be a trait for breeding disease resistance.

2.
Front Plant Sci ; 10: 1583, 2019.
Article in English | MEDLINE | ID: mdl-31850047

ABSTRACT

Cucumber vein yellowing virus (CVYV) causes severe yield losses in cucurbit crops across Mediterranean countries. The control of this virus is based on cultural practices to prevent the presence of its vector (Bemisia tabaci) and breeding for natural resistance, which requires the identification of the loci involved and the development of molecular markers for linkage analysis. In this work, we mapped a monogenic locus for resistance to CVYV in cucumber by using a Bulked Segregant Analysis (BSA) strategy coupled with whole-genome resequencing. We phenotyped 135 F3 families from a segregating population between a susceptible pickling cucumber and a resistant Long Dutch type cucumber for CVYV resistance. Phenotypic analysis determined the monogenic and incomplete dominance inheritance of the resistance. We named the locus CsCvy-1. For mapping this locus, 15 resistant and 15 susceptible homozygous F2 individuals were selected for whole genome resequencing. By using a customized bioinformatics pipeline, we identified a unique region in chromosome 5 associated to resistance to CVYV, explaining more than 80% of the variability. The resequencing data provided us with additional SNP markers to decrease the interval of CsCvy-1 to 625 kb, containing 24 annotated genes. Markers flanking CsCvy-1 in a 5.3 cM interval were developed for marker-assisted selection (MAS) in breeding programs and will be useful for the identification of the target gene in future studies.

3.
Front Plant Sci ; 8: 1679, 2017.
Article in English | MEDLINE | ID: mdl-29018473

ABSTRACT

Sugar content is the major determinant of both fruit quality and consumer acceptance in melon (Cucumis melo L), and is a primary target for crop improvement. Near-isogenic lines (NILs) derived from the intraspecific cross between a "Piel de Sapo" (PS) type and the exotic cultivar "Songwhan Charmi" (SC), and several populations generated from the cross of PS × Ames 24294 ("Trigonus"), a wild melon, were used to identify QTL related to sugar and organic acid composition. Seventy-eight QTL were detected across several locations and different years, with three important clusters related to sugar content located on chromosomes 4, 5, and 7. Two PS × SC NILs (SC5-1 and SC5-2) sharing a common genomic interval of 1.7 Mb at the top of chromosome 5 contained QTL reducing soluble solids content (SSC) and sucrose content by an average of 29 and 68%, respectively. This cluster collocated with QTL affecting sugar content identified in other studies in lines developed from the PS × SC cross and supported the presence of a stable consensus locus involved in sugar accumulation that we named SUCQSC5.1. QTL reducing soluble solids and sucrose content identified in the "Trigonus" mapping populations, as well as QTL identified in previous studies from other ssp. agrestis sources, collocated with SUCQSC5.1, suggesting that they may be allelic and implying a role in domestication. In subNILs derived from the PS × SC5-1 cross, SUCQSC5.1 reduced SSC and sucrose content by an average of 18 and 34%, respectively, and was fine-mapped to a 56.1 kb interval containing four genes. Expression analysis of the candidate genes in mature fruit showed differences between the subNILs with PS alleles that were "high" sugar and SC alleles of "low" sugar phenotypes for MELO3C014519, encoding a putative BEL1-like homeodomain protein. Sequence differences in the gene predicted to affect protein function were restricted to SC and other ssp. agrestis cultivar groups. These results provide the basis for further investigation of genes affecting sugar accumulation in melon.

4.
Plant Sci ; 242: 300-309, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26566847

ABSTRACT

The genetic control of yield and related traits in maize has been addressed by many quantitative trait locus (QTL) studies, which have produced a wealth of QTL information, also known as QTLome. In this study, we assembled a yield QTLome database and carried out QTL meta-analysis based on 44 published studies, representing 32 independent mapping populations and 49 parental lines. A total of 808 unique QTLs were condensed to 84 meta-QTLs and were projected on the 10 maize chromosomes. Seventy-four percent of QTLs showed a proportion of phenotypic variance explained (PVE) smaller than 10% confirming the high genetic complexity of grain yield. Yield QTLome projection on the genetic map suggested pericentromeric enrichment of QTLs. Conversely, pericentromeric depletion of QTLs was observed when the physical map was considered, suggesting gene density as the main driver of yield QTL distribution on chromosomes. Dominant and overdominant yield QTLs did not distribute differently from additive effect QTLs.


Subject(s)
Chromosomes, Plant/genetics , Genes, Plant/genetics , Quantitative Trait Loci/genetics , Zea mays/genetics , Chromosome Mapping/methods , Databases, Genetic , Genome, Plant/genetics , Plant Breeding/methods , Polymorphism, Single Nucleotide , Zea mays/growth & development
5.
Planta ; 222(1): 80-90, 2005 Sep.
Article in English | MEDLINE | ID: mdl-15838668

ABSTRACT

The possible function of the maize transmembrane protein TM20 in hormone transport has been investigated using immunological methods and by microinjection of TM20 cRNA in Xenopus oocytes. The existence of a similar gene in rice indicates that the overall structure of the deduced protein is conserved between these two cereals. An antibody raised against a conserved motif, in a loop between two transmembrane domains, locates the protein (TM20) in differentiating provascular cells in maize embryo. The protein has a polarized distribution within the cell in the most differentiated stages of development. Xenopus laevis oocytes microinjected with TM20 appear to modify transport activities across the plasma membrane. These results are discussed in relation to other transport proteins that influence plant development.


Subject(s)
Membrane Proteins/metabolism , Plant Proteins/metabolism , Zea mays/embryology , Zea mays/metabolism , Amino Acid Sequence , Animals , Cell Differentiation , Gene Expression Regulation, Developmental , Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Plant , Immunohistochemistry , Membrane Proteins/chemistry , Membrane Proteins/immunology , Molecular Sequence Data , Oocytes/metabolism , Plant Proteins/chemistry , Plant Proteins/immunology , Sequence Homology, Amino Acid , Xenopus laevis , Zea mays/cytology
6.
Gene ; 340(1): 111-21, 2004 Sep 29.
Article in English | MEDLINE | ID: mdl-15556299

ABSTRACT

Ankyrin repeats are present in a great variety of proteins of eukaryotes, prokaryotes and some viruses and they function as protein-protein interaction domains. We have search for all the ankyrin repeats present in Arabidopsis proteins and determined their consensus sequence. We identified a total of 509 ankyrin repeats present in 105 proteins. Ankyrin repeat containing proteins can be classified in 16 groups of structurally similar proteins. The most abundant group contains proteins with ankyrin repeats and transmembrane domains (AtANKTM). Sequence similarity analysis indicates that these proteins are divided in six families. Some of the AtAnkTm genes are organized in tandem arrays and others are present in duplicated parts of the Arabidopsis genome. The expression of several AtAnkTm genes was analyzed resulting in a wide variety of expression patterns even within the same family. The likely functions of these proteins are discussed in comparison with the known functions of proteins with similar organization in other species.


Subject(s)
Ankyrin Repeat/genetics , Arabidopsis Proteins/genetics , Arabidopsis/genetics , Ankyrins/genetics , Arabidopsis Proteins/classification , Binding Sites/genetics , Consensus Sequence/genetics , Gene Expression Profiling , Genome, Plant , Membrane Proteins/genetics , Multigene Family/genetics , Phylogeny , Potassium Channels/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Zinc Fingers/genetics
SELECTION OF CITATIONS
SEARCH DETAIL