Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
1.
Urologia ; 91(2): 357-363, 2024 May.
Article in English | MEDLINE | ID: mdl-38345047

ABSTRACT

INTRODUCTION: We present our initial experience with robot-assisted reconstructive surgeries with the Da Vinci Xi robotic system for benign ureteric pathologies. MATERIALS AND METHODS: This is a retrospective review of prospectively collected data of patients who underwent robot-assisted reconstructive procedures for benign diseases of the ureter at our department from April 2018 to November 2022. Demographic and perioperative details were recorded. Patients were followed up and surgical success was evaluated on the basis of symptomatic, functional, and radiological improvement. RESULTS: A total of 34 patients underwent robot-assisted reconstructions for benign ureteric pathologies by various techniques. Mean age, body mass index (BMI), hospital stay and follow-up duration were 36 years, 24.1 kg/m2, 5.29 days, and 7.08 months respectively. Procedures included pyeloplasty in eight, primary ureteroneocystostomy (UNC) in seven, Psoas hitch UNC in five, Boari flap UNC in six, Ureteroureterostomy in four, ureterocalicostomy in two and ileal ureteral transposition in two patients. Mean docking time, total operative time, and estimated blood loss were 31.5 min, 178 min, and 64.3 ml, respectively. All patients had radiologic or functional improvement on follow-up after 6 months. CONCLUSION: Robot-assisted reconstructive surgery for benign ureteric and bladder pathologies imparted excellent short-term outcomes without major complications with all the advantages of a minimally invasive approach.


Subject(s)
Robotic Surgical Procedures , Ureteral Diseases , Urologic Surgical Procedures , Humans , Robotic Surgical Procedures/methods , Female , Male , Retrospective Studies , Adult , Urologic Surgical Procedures/methods , Ureteral Diseases/surgery , Middle Aged , Ureter/surgery , Plastic Surgery Procedures/methods , Young Adult , Adolescent
2.
Neuroimage ; 284: 120466, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37995919

ABSTRACT

Alterations in subcortical brain structure volumes have been found to be associated with several neurodegenerative and psychiatric disorders. At the same time, genome-wide association studies (GWAS) have identified numerous common variants associated with brain structure. In this study, we integrate these findings, aiming to identify proteins, metabolites, or microbes that have a putative causal association with subcortical brain structure volumes via a two-sample Mendelian randomization approach. This method uses genetic variants as instrument variables to identify potentially causal associations between an exposure and an outcome. The exposure data that we analyzed comprised genetic associations for 2994 plasma proteins, 237 metabolites, and 103 microbial genera. The outcome data included GWAS data for seven subcortical brain structure volumes including accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Eleven proteins and six metabolites were found to have a significant association with subcortical structure volumes, with nine proteins and five metabolites replicated using independent exposure data. We found causal associations between accumbens volume and plasma protease c1 inhibitor as well as strong association between putamen volume and Agouti signaling protein. Among metabolites, urate had the strongest association with thalamic volume. No significant associations were detected between the microbial genera and subcortical brain structure volumes. We also observed significant enrichment for biological processes such as proteolysis, regulation of the endoplasmic reticulum apoptotic signaling pathway, and negative regulation of DNA binding. Our findings provide insights to the mechanisms through which brain volumes may be affected in the pathogenesis of neurodevelopmental and psychiatric disorders and point to potential treatment targets for disorders that are associated with subcortical brain structure volumes.


Subject(s)
Genome-Wide Association Study , Mendelian Randomization Analysis , Humans , Genome-Wide Association Study/methods , Multiomics , Brain/diagnostic imaging , Brain/pathology , Biomarkers , Magnetic Resonance Imaging/methods
3.
BMC Genom Data ; 24(1): 70, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37986041

ABSTRACT

Complex disorders are caused by a combination of genetic, environmental and lifestyle factors, and their prevalence can vary greatly across different populations. The extent to which genetic risk, as identified by Genome Wide Association Study (GWAS), correlates to disease prevalence in different populations has not been investigated systematically. Here, we studied 14 different complex disorders and explored whether polygenic risk scores (PRS) based on current GWAS correlate to disease prevalence within Europe and around the world. A clear variation in GWAS-based genetic risk was observed based on ancestry and we identified populations that have a higher genetic liability for developing certain disorders. We found that for four out of the 14 studied disorders, PRS significantly correlates to disease prevalence within Europe. We also found significant correlations between worldwide disease prevalence and PRS for eight of the studied disorders with Multiple Sclerosis genetic risk having the highest correlation to disease prevalence. Based on current GWAS results, the across population differences in genetic risk for certain disorders can potentially be used to understand differences in disease prevalence and identify populations with the highest genetic liability. The study highlights both the limitations of PRS based on current GWAS but also the fact that in some cases, PRS may already have high predictive power. This could be due to the genetic architecture of specific disorders or increased GWAS power in some cases.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Humans , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study/methods , Prevalence , Risk Factors , Multifactorial Inheritance/genetics
4.
Front Immunol ; 14: 1147573, 2023.
Article in English | MEDLINE | ID: mdl-37809097

ABSTRACT

Introduction: Autoimmune disorders (ADs) are a group of about 80 disorders that occur when self-attacking autoantibodies are produced due to failure in the self-tolerance mechanisms. ADs are polygenic disorders and associations with genes both in the human leukocyte antigen (HLA) region and outside of it have been described. Previous studies have shown that they are highly comorbid with shared genetic risk factors, while epidemiological studies revealed associations between various lifestyle and health-related phenotypes and ADs. Methods: Here, for the first time, we performed a comparative polygenic risk score (PRS) - Phenome Wide Association Study (PheWAS) for 11 different ADs (Juvenile Idiopathic Arthritis, Primary Sclerosing Cholangitis, Celiac Disease, Multiple Sclerosis, Rheumatoid Arthritis, Psoriasis, Myasthenia Gravis, Type 1 Diabetes, Systemic Lupus Erythematosus, Vitiligo Late Onset, Vitiligo Early Onset) and 3,254 phenotypes available in the UK Biobank that include a wide range of socio-demographic, lifestyle and health-related outcomes. Additionally, we investigated the genetic relationships of the studied ADs, calculating their genetic correlation and conducting cross-disorder GWAS meta-analyses for the observed AD clusters. Results: In total, we identified 508 phenotypes significantly associated with at least one AD PRS. 272 phenotypes were significantly associated after excluding variants in the HLA region from the PRS estimation. Through genetic correlation and genetic factor analyses, we identified four genetic factors that run across studied ADs. Cross-trait meta-analyses within each factor revealed pleiotropic genome-wide significant loci. Discussion: Overall, our study confirms the association of different factors with genetic susceptibility for ADs and reveals novel observations that need to be further explored.


Subject(s)
Autoimmune Diseases , Diabetes Mellitus, Type 1 , Vitiligo , Humans , Autoimmune Diseases/genetics , Diabetes Mellitus, Type 1/genetics , HLA Antigens , Phenotype , Polymorphism, Single Nucleotide
5.
medRxiv ; 2023 Apr 03.
Article in English | MEDLINE | ID: mdl-37066330

ABSTRACT

Alterations in subcortical brain structure volumes have been found to be associated with several neurodegenerative and psychiatric disorders. At the same time, genome-wide association studies (GWAS) have identified numerous common variants associated with brain structure. In this study, we integrate these findings, aiming to identify proteins, metabolites, or microbes that have a putative causal association with subcortical brain structure volumes via a two-sample Mendelian randomization approach. This method uses genetic variants as instrument variables to identify potentially causal associations between an exposure and an outcome. The exposure data that we analyzed comprised genetic associations for 2,994 plasma proteins, 237 metabolites, and 103 microbial genera. The outcome data included GWAS data for seven subcortical brain structure volumes including accumbens, amygdala, caudate, hippocampus, pallidum, putamen, and thalamus. Eleven proteins and six metabolites were found to have a significant association with subcortical structure volumes. We found causal associations between amygdala volume and granzyme A as well as association between accumbens volume and plasma protease c1 inhibitor. Among metabolites, urate had the strongest association with thalamic volume. No significant associations were detected between the microbial genera and subcortical brain structure volumes. We also observed significant enrichment for biological processes such as proteolysis, regulation of the endoplasmic reticulum apoptotic signaling pathway, and negative regulation of DNA binding. Our findings provide insights to the mechanisms through which brain volumes may be affected in the pathogenesis of neurodevelopmental and psychiatric disorders and point to potential treatment targets for disorders that are associated with subcortical brain structure volumes.

6.
Biol Psychiatry ; 2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36738982

ABSTRACT

BACKGROUND: Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder of complex genetic architecture and is characterized by multiple motor tics and at least one vocal tic persisting for more than 1 year. METHODS: We performed a genome-wide meta-analysis integrating a novel TS cohort with previously published data, resulting in a sample size of 6133 individuals with TS and 13,565 ancestry-matched control participants. RESULTS: We identified a genome-wide significant locus on chromosome 5q15. Integration of expression quantitative trait locus, Hi-C (high-throughput chromosome conformation capture), and genome-wide association study data implicated the NR2F1 gene and associated long noncoding RNAs within the 5q15 locus. Heritability partitioning identified statistically significant enrichment in brain tissue histone marks, while polygenic risk scoring of brain volume data identified statistically significant associations with right and left thalamus volumes and right putamen volume. CONCLUSIONS: Our work presents novel insights into the neurobiology of TS, thereby opening up new directions for future studies.

7.
Transl Psychiatry ; 13(1): 69, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36823209

ABSTRACT

Tourette Syndrome (TS) is a complex neurodevelopmental disorder characterized by vocal and motor tics lasting more than a year. It is highly polygenic in nature with both rare and common previously associated variants. Epidemiological studies have shown TS to be correlated with other phenotypes, but large-scale phenome wide analyses in biobank level data have not been performed to date. In this study, we used the summary statistics from the latest meta-analysis of TS to calculate the polygenic risk score (PRS) of individuals in the UK Biobank data and applied a Phenome Wide Association Study (PheWAS) approach to determine the association of disease risk with a wide range of phenotypes. A total of 57 traits were found to be significantly associated with TS polygenic risk, including multiple psychosocial factors and mental health conditions such as anxiety disorder and depression. Additional associations were observed with complex non-psychiatric disorders such as Type 2 diabetes, heart palpitations, and respiratory conditions. Cross-disorder comparisons of phenotypic associations with genetic risk for other childhood-onset disorders (e.g.: attention deficit hyperactivity disorder [ADHD], autism spectrum disorder [ASD], and obsessive-compulsive disorder [OCD]) indicated an overlap in associations between TS and these disorders. ADHD and ASD had a similar direction of effect with TS while OCD had an opposite direction of effect for all traits except mental health factors. Sex-specific PheWAS analysis identified differences in the associations with TS genetic risk between males and females. Type 2 diabetes and heart palpitations were significantly associated with TS risk in males but not in females, whereas diseases of the respiratory system were associated with TS risk in females but not in males. This analysis provides further evidence of shared genetic and phenotypic architecture of different complex disorders.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Autism Spectrum Disorder , Diabetes Mellitus, Type 2 , Tourette Syndrome , Male , Female , Humans , Tourette Syndrome/genetics , Autism Spectrum Disorder/genetics , Attention Deficit Disorder with Hyperactivity/genetics , Risk Factors
8.
J Cancer Res Ther ; 18(6): 1646-1650, 2022.
Article in English | MEDLINE | ID: mdl-36412425

ABSTRACT

Objective: The objective of our study was to evaluate the detection rate of prostate cancer by digital rectal examination (DRE) and serum prostate-specific antigen (PSA) levels followed by standard 12-core transrectal ultrasound (TRUS)-guided prostate biopsy. Materials and Methods: After screening of patients presenting with lower urinary tract symptoms (LUTS) using DRE and serum PSA level, we enrolled patients for TRUS-guided 12-core prostate biopsy. Indications included PSA level ≥4 ng/ml and/or suspicious DRE findings. A retrospective analysis was done to find out the correlation between suspicious rectal examination and various serum PSA levels in detection of cancer prostate. Results: A total of 847 patients were screened for cancer prostate during our study period (May 2012-February 2020). Among them, 823 patients who underwent prostate biopsy were analyzed. Prostate cancer was detected in 330 cases (40.09%). Mean age of patient (years) with and without prostate cancer was 66.25 ± 9.45 and 64.3 ± 8.96 years, respectively. Median value of serum PSA in patients positive for cancer was 33 ± 260 ng/ml compared to patients without cancer, who had a median value of 9 ± 64 ng/ml (P-value of <0.0001). The detection rate of cancer based on suspicious DRE findings irrespective of PSA was 52.18% (251/481), compared to 45.46% (311/684) using a PSA cut-off of ≥4.0 ng/ml alone. Among 330 patients with positive biopsy, 19 (5.75%) had a PSA level <4 ng/ml and they were identified based on suspicious DRE alone. Conclusion: Suspicious DRE was significantly associated with detection of prostate cancer across all PSA levels. Patients with PSA <4 can harbor prostate malignancy and such cases can be detected by use of DRE in screening of all patients with LUTS.


Subject(s)
Prostatic Neoplasms , Urology , Male , Humans , Digital Rectal Examination , Prostate-Specific Antigen , Retrospective Studies , Tertiary Healthcare , Prostatic Neoplasms/pathology
9.
Front Psychiatry ; 13: 958688, 2022.
Article in English | MEDLINE | ID: mdl-36072455

ABSTRACT

Tourette syndrome (TS) is characterized by multiple motor and vocal tics, and high-comorbidity rates with other neuropsychiatric disorders. Obsessive compulsive disorder (OCD), attention deficit hyperactivity disorder (ADHD), autism spectrum disorders (ASDs), major depressive disorder (MDD), and anxiety disorders (AXDs) are among the most prevalent TS comorbidities. To date, studies on TS brain structure and function have been limited in size with efforts mostly fragmented. This leads to low-statistical power, discordant results due to differences in approaches, and hinders the ability to stratify patients according to clinical parameters and investigate comorbidity patterns. Here, we present the scientific premise, perspectives, and key goals that have motivated the establishment of the Enhancing Neuroimaging Genetics through Meta-Analysis for TS (ENIGMA-TS) working group. The ENIGMA-TS working group is an international collaborative effort bringing together a large network of investigators who aim to understand brain structure and function in TS and dissect the underlying neurobiology that leads to observed comorbidity patterns and clinical heterogeneity. Previously collected TS neuroimaging data will be analyzed jointly and integrated with TS genomic data, as well as equivalently large and already existing studies of highly comorbid OCD, ADHD, ASD, MDD, and AXD. Our work highlights the power of collaborative efforts and transdiagnostic approaches, and points to the existence of different TS subtypes. ENIGMA-TS will offer large-scale, high-powered studies that will lead to important insights toward understanding brain structure and function and genetic effects in TS and related disorders, and the identification of biomarkers that could help inform improved clinical practice.

10.
J Lab Physicians ; 14(3): 265-270, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36119433

ABSTRACT

Objectives Urinary tract infection (UTI) is one of the most common diagnoses in patients visiting urology clinics. Rampant use of empiric and inadequate doses of antibiotics leads to an increase in resistance and poses a huge financial burden. We evaluated UTI in relation to antibiotics used, frequency, susceptibility, and resistance pattern of different pathogens at a tertiary care center and made some important observations. Methods Prospectively 729 patients diagnosed with UTI attending a urology outpatient department from July 2018 to January 2020 were managed accordingly. Antibiotics were started on the basis of urine culture and sensitivity (c/s) or empirically and changed according to subsequent urine c/s. Repeat urine c/s was performed after 5 to 7 days of starting therapy and 10 days after completion of therapy. Results Out of 729 subjects, 417 (57.2%) were males and 312 (42.8%) were females. The most common symptom at diagnosis was dysuria 512 (70.2%), whereas 221 (30.3%) patients presented with fever. Escherichia coli was the most common organism isolated, 453 (62.1%). Among 729 patients, 239 took antibiotics without c/s report, whereas in 490 patients antibiotics were prescribed after the report. A total of 431 (59.1%) patients required one antibiotic session for clearance of pathogen, whereas 135 (18.5%) required two sessions, and three sessions were required in 66 (9%) cases. Among 239 patients whose culture came out to be positive, 145 (60.6%) were found to be resistant to the previously given antibiotic and the common pathogens isolated were E. coli (61 [42%]), Pseudomonas (28 [19.3%]), Enterococcus (22 [15.1%]), Klebsiella (14 [9.6%]), and others. Conclusion Unchecked, rampant, and inadequate use of antibiotics leads to complicated UTI with the increasing share of Pseudomonas, Klebsiella , or other dangerous microbes, which are difficult to treat as well as pose threat in the future.

11.
Methods Mol Biol ; 2472: 209-220, 2022.
Article in English | MEDLINE | ID: mdl-35674903

ABSTRACT

Pulmonary arterial hypertension (PAH) is a severe disease characterized by sustained vasoconstriction, concentric wall thickening and vascular remodeling leading to increased pulmonary vascular resistance, causing right heart failure and death. Acute alveolar hypoxia causes pulmonary vasoconstriction, while sustained hypoxia causes pulmonary hypertension (PH). Activation of Notch signaling is implicated in the development of PAH and chronic hypoxia induced PH via partially its enhancing effect on Ca2+ signaling in pulmonary arterial smooth muscle cells (PASMCs). Pharmacological experiments and genetic approach using animal models of experimental PH (e.g., chronic hypoxia-induced PH) have been routinely utilized to study pathogenic mechanisms of PAH/PH and identify novel therapeutic targets. In this chapter, we describe protocols to investigate the role of Notch by measuring pulmonary hemodynamics in vivo and pulmonary arterial pressure ex vivo in mouse models of experimental PH. Using these experimental protocols, one can study the role of Notch or Notch signaling pathway in the pathogenic mechanisms of pulmonary vascular disease and develop novel therapies by targeting Notch ligands and receptors.


Subject(s)
Hypertension, Pulmonary , Muscle, Smooth, Vascular , Animals , Cell Proliferation , Cells, Cultured , Hypoxia/metabolism , Mice , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery , Vascular Remodeling
12.
Am J Physiol Lung Cell Mol Physiol ; 322(5): L737-L760, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35318857

ABSTRACT

Concentric pulmonary vascular wall thickening due partially to increased pulmonary artery (PA) smooth muscle cell (PASMC) proliferation contributes to elevating pulmonary vascular resistance (PVR) in patients with pulmonary hypertension (PH). Although pulmonary vasoconstriction may be an early contributor to increasing PVR, the transition of contractile PASMCs to proliferative PASMCs may play an important role in the development and progression of pulmonary vascular remodeling in PH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) is a trigger for PASMC contraction and proliferation. Here, we report that upregulation of Piezo1, a mechanosensitive cation channel, is involved in the contractile-to-proliferative phenotypic transition of PASMCs and potential development of pulmonary vascular remodeling. By comparing freshly isolated PA (contractile PASMCs) and primary cultured PASMCs (from the same rat) in a growth medium (proliferative PASMCs), we found that Piezo1, Notch2/3, and CaSR protein levels were significantly higher in proliferative PASMCs than in contractile PASMCs. Upregulated Piezo1 was associated with an increase in expression of PCNA, a marker for cell proliferation, whereas downregulation (with siRNA) or inhibition (with GsMTx4) of Piezo1 attenuated PASMC proliferation. Furthermore, Piezo1 in the remodeled PA from rats with experimental PH was upregulated compared with PA from control rats. These data indicate that PASMC contractile-to-proliferative phenotypic transition is associated with the transition or adaptation of membrane channels and receptors. Upregulated Piezo1 may play a critical role in PASMC phenotypic transition and PASMC proliferation. Upregulation of Piezo1 in proliferative PASMCs may likely be required to provide sufficient Ca2+ to assure nuclear/cell division and PASMC proliferation, contributing to the development and progression of pulmonary vascular remodeling in PH.


Subject(s)
Hypertension, Pulmonary , Membrane Proteins/metabolism , Pulmonary Artery , Animals , Calcium Signaling/physiology , Cell Proliferation , Cells, Cultured , Humans , Hypertension, Pulmonary/metabolism , Ion Channels/genetics , Ion Channels/metabolism , Muscle, Smooth, Vascular/metabolism , Myocytes, Smooth Muscle/metabolism , Pulmonary Artery/metabolism , Rats , Vascular Remodeling
13.
Sleep ; 45(6)2022 06 13.
Article in English | MEDLINE | ID: mdl-34893914

ABSTRACT

STUDY OBJECTIVES: Chronic obstructive pulmonary disease and obstructive sleep apnea overlap syndrome is associated with excess mortality, and outcomes are related to the degree of hypoxemia. People at high altitudes are susceptible to periodic breathing, and hypoxia at altitude is associated with cardio-metabolic dysfunction. Hypoxemia in these scenarios may be described as superimposed sustained hypoxia (SH) plus intermittent hypoxia (IH), or overlap hypoxia (OH), the effects of which have not been investigated. We aimed to characterize the cardio-metabolic consequences of OH in mice. METHODS: C57BL/6J mice were subjected to either SH (FiO2 = 0.10), IH (FiO2 = 0.21 for 12 h, and FiO2 oscillating between 0.21 and 0.06, 60 times/hour, for 12 h), OH (FiO2 = 0.13 for 12 h, and FiO2 oscillating between 0.13 and 0.06, 60 times/hour, for 12 h), or room air (RA), n = 8/group. Blood pressure and intraperitoneal glucose tolerance test were measured serially, and right ventricular systolic pressure (RVSP) was assessed. RESULTS: Systolic blood pressure transiently increased in IH and OH relative to SH and RA. RVSP did not increase in IH, but increased in SH and OH by 52% (p < .001) and 20% (p = .001). Glucose disposal worsened in IH and improved in SH, with no change in OH. Serum low- and very-low-density lipoproteins increased in OH and SH, but not in IH. Hepatic oxidative stress increased in all hypoxic groups, with the highest increase in OH. CONCLUSIONS: OH may represent a unique and deleterious cardio-metabolic stimulus, causing systemic and pulmonary hypertension, and without protective metabolic effects characteristic of SH.


Subject(s)
Hypoxia , Sleep Apnea, Obstructive , Animals , Disease Models, Animal , Humans , Mice , Mice, Inbred C57BL , Oxygen/metabolism , Phenotype
14.
Hum Mol Genet ; 31(7): 1130-1140, 2022 03 31.
Article in English | MEDLINE | ID: mdl-34718575

ABSTRACT

The molecular mechanisms leading to high-altitude pulmonary hypertension (HAPH) remains poorly understood. We previously analyzed the whole genome sequence of Kyrgyz highland population and identified eight genomic intervals having a potential role in HAPH. Tropomodulin 3 gene (TMOD3), which encodes a protein that binds and caps the pointed ends of actin filaments and inhibits cell migration, was one of the top candidates. Here we systematically sought additional evidence to validate the functional role of TMOD3. In-silico analysis reveals that some of the SNPs in HAPH associated genomic intervals were positioned in a regulatory region that could result in alternative splicing of TMOD3. In order to functionally validate the role of TMOD3 in HAPH, we exposed Tmod3-/+ mice to 4 weeks of constant hypoxia, i.e. 10% O2 and analyzed both functional (hemodynamic measurements) and structural (angiography) parameters related to HAPH. The hemodynamic measurements, such as right ventricular systolic pressure, a surrogate measure for pulmonary arterial systolic pressure, and right ventricular contractility (RV- ± dP/dt), increases with hypoxia did not separate between Tmod3-/+ and control mice. Remarkably, there was a significant increase in the number of lung vascular branches and total length of pulmonary vascular branches (P < 0.001) in Tmod3-/+ after 4 weeks of constant hypoxia as compared with controls. Notably, the Tmod3-/+ endothelial cells migration was also significantly higher than that from the wild-type littermates. Our results indicate that, under chronic hypoxia, lower levels of Tmod3 play an important role in the maintenance or neo-vascularization of pulmonary arteries.


Subject(s)
Endothelial Cells , Tropomodulin/metabolism , Actin Cytoskeleton/metabolism , Animals , Endothelial Cells/metabolism , Hypoxia/genetics , Hypoxia/metabolism , Lung/metabolism , Mice , Tropomodulin/chemistry , Tropomodulin/genetics
15.
Am J Physiol Cell Physiol ; 321(6): C1010-C1027, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34669509

ABSTRACT

Piezo is a mechanosensitive cation channel responsible for stretch-mediated Ca2+ and Na+ influx in multiple types of cells. Little is known about the functional role of Piezo1 in the lung vasculature and its potential pathogenic role in pulmonary arterial hypertension (PAH). Pulmonary arterial endothelial cells (PAECs) are constantly under mechanic stretch and shear stress that are sufficient to activate Piezo channels. Here, we report that Piezo1 is significantly upregulated in PAECs from patients with idiopathic PAH and animals with experimental pulmonary hypertension (PH) compared with normal controls. Membrane stretch by decreasing extracellular osmotic pressure or by cyclic stretch (18% CS) increases Ca2+-dependent phosphorylation (p) of AKT and ERK, and subsequently upregulates expression of Notch ligands, Jagged1/2 (Jag-1 and Jag-2), and Delta like-4 (DLL4) in PAECs. siRNA-mediated downregulation of Piezo1 significantly inhibited the stretch-mediated pAKT increase and Jag-1 upregulation, whereas downregulation of AKT by siRNA markedly attenuated the stretch-mediated Jag-1 upregulation in human PAECs. Furthermore, the mRNA and protein expression level of Piezo1 in the isolated pulmonary artery, which mainly contains pulmonary arterial smooth muscle cells (PASMCs), from animals with severe PH was also significantly higher than that from control animals. Intraperitoneal injection of a Piezo1 channel blocker, GsMTx4, ameliorated experimental PH in mice. Taken together, our study suggests that membrane stretch-mediated Ca2+ influx through Piezo1 is an important trigger for pAKT-mediated upregulation of Jag-1 in PAECs. Upregulation of the mechanosensitive channel Piezo1 and the resultant increase in the Notch ligands (Jag-1/2 and DLL4) in PAECs may play a critical pathogenic role in the development of pulmonary vascular remodeling in PAH and PH.


Subject(s)
Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Ion Channels/biosynthesis , Mechanotransduction, Cellular/physiology , Pulmonary Artery/metabolism , Up-Regulation/physiology , Adult , Aged , Animals , Cells, Cultured , Endothelial Cells/drug effects , Female , Humans , Hypertension, Pulmonary/pathology , Indoles/pharmacology , Male , Mechanotransduction, Cellular/drug effects , Mice , Mice, Inbred C57BL , Middle Aged , Pulmonary Artery/drug effects , Pulmonary Artery/pathology , Pyrroles/pharmacology , Rats , Rats, Sprague-Dawley , Up-Regulation/drug effects
16.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1161-L1182, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34704831

ABSTRACT

Idiopathic pulmonary arterial hypertension (PAH) is a fatal and progressive disease. Sustained vasoconstriction due to pulmonary arterial smooth muscle cell (PASMC) contraction and concentric arterial remodeling due partially to PASMC proliferation are the major causes for increased pulmonary vascular resistance and increased pulmonary arterial pressure in patients with precapillary pulmonary hypertension (PH) including PAH and PH due to respiratory diseases or hypoxemia. We and others observed upregulation of TRPC6 channels in PASMCs from patients with PAH. A rise in cytosolic Ca2+ concentration ([Ca2+]cyt) in PASMC triggers PASMC contraction and vasoconstriction, while Ca2+-dependent activation of PI3K/AKT/mTOR pathway is a pivotal signaling cascade for cell proliferation and gene expression. Despite evidence supporting a pathological role of TRPC6, no selective and orally bioavailable TRPC6 antagonist has yet been developed and tested for treatment of PAH or PH. In this study, we sought to investigate whether block of receptor-operated Ca2+ channels using a nonselective blocker of cation channels, 2-aminoethyl diphenylborinate (2-APB, administered intraperitoneally) and a selective blocker of TRPC6, BI-749327 (administered orally) can reverse established PH in mice. The results from the study show that intrapulmonary application of 2-APB (40 µM) or BI-749327 (3-10 µM) significantly and reversibly inhibited acute alveolar hypoxia-induced pulmonary vasoconstriction. Intraperitoneal injection of 2-APB (1 mg/kg per day) significantly attenuated the development of PH and partially reversed established PH in mice. Oral gavage of BI-749327 (30 mg/kg, every day, for 2 wk) reversed established PH by ∼50% via regression of pulmonary vascular remodeling. Furthermore, 2-APB and BI-749327 both significantly inhibited PDGF- and serum-mediated phosphorylation of AKT and mTOR in PASMC. In summary, the receptor-operated and mechanosensitive TRPC6 channel is a good target for developing novel treatment for PAH/PH. BI-749327, a selective TRPC6 blocker, is potentially a novel and effective drug for treating PAH and PH due to respiratory diseases or hypoxemia.


Subject(s)
Gene Expression Regulation/drug effects , Hypertension, Pulmonary/pathology , Muscle, Smooth, Vascular/pathology , Pulmonary Artery/pathology , TRPC6 Cation Channel/metabolism , Vasoconstriction , Animals , Boron Compounds/pharmacology , Calcium Signaling , Cells, Cultured , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/metabolism , Mice , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/metabolism , Phosphatidylinositol 3-Kinases/genetics , Phosphatidylinositol 3-Kinases/metabolism , Pulmonary Artery/drug effects , Pulmonary Artery/metabolism , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , TRPC6 Cation Channel/antagonists & inhibitors , TRPC6 Cation Channel/genetics
17.
Pulm Circ ; 11(4): 20458940211041512, 2021.
Article in English | MEDLINE | ID: mdl-34531976

ABSTRACT

Pulmonary arterial hypertension is a progressive and fatal disease and rodents with experimental pulmonary hypertension (PH) are often used to study pathogenic mechanisms, identify therapeutic targets, and develop novel drugs for treatment. Here we describe a hands-on set of experimental approaches including ex vivo lung angiography and histology and in vivo right heart catheterization (RHC) to phenotypically characterize pulmonary hemodynamics and lung vascular structure in normal mice and mice with experimental PH. We utilized Microfil polymer as contrast in our ex vivo lung angiogram to quantitatively examine pulmonary vascular remodeling in mice with experimental PH, and lung histology to estimate pulmonary artery wall thickness. The peripheral lung vascular images were selected to determine the total length of lung vascular branches, the number of branches and the number of junctions in a given area (mm-2). We found that the three parameters determined by angiogram were not significantly different among the apical, middle, and basal regions of the mouse lung from normal mice, and were not influenced by gender (no significant difference between female and male mice). We conducted RHC in mice to measure right ventricular systolic pressure, a surrogate measure for pulmonary artery systolic pressure and right ventricle (RV) contractility (RV ± dP/dtmax) to estimate RV function. RHC, a short time (4-6 min) procedure, did not alter the lung angiography measurements. In summary, utilizing ex vivo angiogram to determine peripheral vascular structure and density in the mouse lung and utilizing in vivo RHC to measure pulmonary hemodynamics are reliable readouts to phenotype normal mice and mice with experimental PH. Lung angiogram and RHC are also reliable approaches to examine pharmacological effects of new drugs on pulmonary vascular remodeling and hemodynamics.

18.
Front Physiol ; 12: 714785, 2021.
Article in English | MEDLINE | ID: mdl-34408668

ABSTRACT

Excessive pulmonary artery (PA) smooth muscle cell (PASMC) proliferation and migration are implicated in the development of pathogenic pulmonary vascular remodeling characterized by concentric arterial wall thickening and arteriole muscularization in patients with pulmonary arterial hypertension (PAH). Pulmonary artery smooth muscle cell contractile-to-proliferative phenotypical transition is a process that promotes pulmonary vascular remodeling. A rise in cytosolic Ca2+ concentration [(Ca2+) cyt ] in PASMCs is a trigger for pulmonary vasoconstriction and a stimulus for pulmonary vascular remodeling. Here, we report that the calcium homeostasis modulator (CALHM), a Ca2+ (and ATP) channel that is allosterically regulated by voltage and extracellular Ca2+, is upregulated during the PASMC contractile-to-proliferative phenotypical transition. Protein expression of CALHM1/2 in primary cultured PASMCs in media containing serum and growth factors (proliferative PASMC) was significantly greater than in freshly isolated PA (contractile PASMC) from the same rat. Upregulated CALHM1/2 in proliferative PASMCs were associated with an increased ratio of pAKT/AKT and pmTOR/mTOR and an increased expression of the cell proliferation marker PCNA, whereas serum starvation and rapamycin significantly downregulated CALHM1/2. Furthermore, CALHM1/2 were upregulated in freshly isolated PA from rats with monocrotaline (MCT)-induced PH and in primary cultured PASMC from patients with PAH in comparison to normal controls. Intraperitoneal injection of CGP 37157 (0.6 mg/kg, q8H), a non-selective blocker of CALHM channels, partially reversed established experimental PH. These data suggest that CALHM upregulation is involved in PASMC contractile-to-proliferative phenotypical transition. Ca2+ influx through upregulated CALHM1/2 may play an important role in the transition of sustained vasoconstriction to excessive vascular remodeling in PAH or precapillary PH. Calcium homeostasis modulator could potentially be a target to develop novel therapies for PAH.

19.
Br J Pharmacol ; 178(17): 3373-3394, 2021 09.
Article in English | MEDLINE | ID: mdl-33694155

ABSTRACT

BACKGROUND AND PURPOSE: Halofuginone is a febrifugine derivative originally isolated from Chinese traditional herb Chang Shan that exhibits anti-hypertrophic, anti-fibrotic and anti-proliferative effects. We sought to investigate whether halofuginone induced pulmonary vasodilation and attenuates chronic hypoxia-induced pulmonary hypertension (HPH). EXPERIMENTAL APPROACH: Patch-clamp experiments were conducted to examine the activity of voltage-dependent Ca2+ channels (VDCCs) in pulmonary artery smooth muscle cells (PASMCs). Digital fluorescence microscopy was used to measure intracellular Ca2+ concentration in PASMCs. Isolated perfused and ventilated mouse lungs were used to measure pulmonary artery pressure (PAP). Mice exposed to hypoxia (10% O2 ) for 4 weeks were used as model of HPH for in vivo experiments. KEY RESULTS: Halofuginone increased voltage-gated K+ (Kv ) currents in PASMCs and K+ currents through KCNA5 channels in HEK cells transfected with KCNA5 gene. HF (0.03-1 µM) inhibited receptor-operated Ca2+ entry in HEK cells transfected with calcium-sensing receptor gene and attenuated store-operated Ca2+ entry in PASMCs. Acute (3-5 min) intrapulmonary application of halofuginone significantly and reversibly inhibited alveolar hypoxia-induced pulmonary vasoconstriction dose-dependently (0.1-10 µM). Intraperitoneal administration of halofuginone (0.3 mg·kg-1 , for 2 weeks) partly reversed established PH in mice. CONCLUSION AND IMPLICATIONS: Halofuginone is a potent pulmonary vasodilator by activating Kv channels and blocking VDCC and receptor-operated and store-operated Ca2+ channels in PASMCs. The therapeutic effect of halofuginone on experimental PH is probably due to combination of its vasodilator effects, via inhibition of excitation-contraction coupling and anti-proliferative effects, via inhibition of the PI3K/Akt/mTOR signalling pathway.


Subject(s)
Hypertension, Pulmonary , Pharmaceutical Preparations , Animals , Calcium , Hypertension, Pulmonary/drug therapy , Hypoxia/drug therapy , Mice , Myocytes, Smooth Muscle , Phosphatidylinositol 3-Kinases , Piperidines , Pulmonary Artery , Quinazolinones
20.
Br J Pharmacol ; 178(1): 121-131, 2021 01.
Article in English | MEDLINE | ID: mdl-32464698

ABSTRACT

An increase in pulmonary artery pressure is a common observation in adult mammals exposed to global alveolar hypoxia. It is considered a maladaptive response that places an increased workload on the right ventricle. The mechanisms initiating and maintaining the elevated pressure are of considerable interest in understanding pulmonary vascular homeostasis. There is an expectation that identifying the key molecules in the integrated vascular response to hypoxia will inform potential drug targets. One strategy is to take advantage of experiments of nature, specifically, to understand the genetic basis for the inter-individual variation in the pulmonary vascular response to acute and chronic hypoxia. To date, detailed phenotyping of highlanders has focused on haematocrit and oxygen saturation rather than cardiovascular phenotypes. This review explores what we can learn from those studies with respect to the pulmonary circulation. LINKED ARTICLES: This article is part of a themed issue on Risk factors, comorbidities, and comedications in cardioprotection. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.1/issuetoc.


Subject(s)
Hypertension, Pulmonary , Animals , Homeostasis , Hypoxia
SELECTION OF CITATIONS
SEARCH DETAIL
...