Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
CNS Drugs ; 2024 Aug 16.
Article in English | MEDLINE | ID: mdl-39150594

ABSTRACT

Major depressive disorder (MDD) is a chronic, burdensome, highly prevalent disease that is characterized by depressed mood and anhedonia. MDD is especially burdensome as approved monoamine antidepressant treatments have weeks-long delays before clinical benefit and low remission rates. In the past 2 decades, a promising target emerged to improve patient outcomes in depression treatment: glutamatergic signaling. This narrative review provides a high-level overview of glutamate signaling in synaptogenesis and neural plasticity and the implications of glutamate dysregulation in depression. Based on this preclinical evidence implicating glutamate in depression and the rapid improvement of depression with ketamine treatment in a proof-of-concept trial, a range of N-methyl-D-aspartate (NMDA)-targeted therapies have been investigated. While an array of treatments has been investigated in registered phase 2 or 3 clinical trials, the development of most of these agents has been discontinued. Multiple glutamate-targeted antidepressants are actively in development, and two are approved. Nasal administration of esketamine (Spravato®) was approved by the US Food and Drug Administration (FDA) in 2019 to treat adults with treatment-resistant depression and in 2020 for adults with MDD with acute suicidal ideation or behavior. Oral combination dextromethorphan-bupropion (AXS-05, Auvelity® extended-release tablet) was FDA approved in 2022 for the treatment of MDD in adults. These approvals bolster the importance of glutamate in depression and represent an exciting breakthrough in contemporary psychiatry, providing new avenues of treatment for patients as first-line therapy or with either poor response or unacceptable side effects to monoaminergic antidepressants.


Major depressive disorder (MDD) is a common disease defined by sadness and a loss of interest or pleasure in activities. Depression treatments include therapy and antidepressant medication. Most available antidepressants affect the same types of chemicals that communicate in the brain (neurotransmitters) called monoamines. Unfortunately, these medicines can take weeks to work for some people and many still have depression symptoms with treatment. To provide more treatment options, new medicines have been studied that impact a different neurotransmitter in the brain, that is, glutamate. Glutamate, the most abundant neurotransmitter, is important for the growth of new brain cell connections, and there are changes in glutamate in people with depression versus people without depression. In 2000, the first small study in people showed that ketamine, a medicine targeting glutamate, quickly improved depression symptoms. Safety risks, including dissociation and sedation, require supervised administration and management guidance. Since 2000, about 20 glutamate-targeted medicines have been tested in human clinical trials. Two of these are approved as antidepressants. The medicine esketamine, which is inhaled up the nose at a clinic under medical supervision, is approved for the adjunctive treatment of people with MDD whose symptoms do not improve with other treatments or who have suicidal thoughts or actions (brand name Spravato®). The combination medicine dextromethorphan­bupropion is a swallowed tablet taken twice daily that is an approved monotherapy to treat adults with MDD (brand name Auvelity®). The approval of these drugs helps show the importance of glutamate in depression and provides more options for people with depression.

2.
Cureus ; 16(7): e64233, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39130953

ABSTRACT

Introduction An EEG is an important tool in the diagnosis of neurological diseases. Performing an EEG on children can be challenging due to their tendency to not cooperate for the recommended duration. We aim to optimize the duration of EEG recording in children by finding the optimal duration of recording. Materials and methods A single-center prospective observational study was done after appropriate ethical clearance. Children aged 0-14 were recruited and examined, and the recommended EEG was done. Data were collected and analyzed. Results Of the 112 EEGs analyzed, 29 EEGs were normal, i.e., no diagnostic anomaly was noticed. In the remaining 83 EEGs, if the duration of the EEG was reduced to 20 minutes, it resulted in missing the diagnostic anomaly in 20 cases (24.1%; 95% CI: 11.2%-26.2%). Reducing the duration of the EEG recording to 10 minutes resulted in missing 63 of the diagnostic anomalies (75.9%; 95% CI: 46.6%-65.6%). Of the 86 drug-induced EEGs, 22 were normal (25.6%; 95% CI: 16.8%-36.1%). Of the 24 routine EEGs, seven were normal (29.2%; 95% CI: 12.6%-51.1%). Of the two sleep-deprived EEGs, neither was normal (0.0%; 95% CI: 0.0%-84.1%). Conclusion In our study, we observed that optimization of the duration of EEG recording can be done to 20 minutes in all populations. We also observed that if we find a diagnostic abnormality early during EEG recording, then continuation of the EEG may not be necessary to make a valid report. Having said so, having a negative EEG may not necessarily rule out a diagnosis. We did not find the superiority of any of the EEG protocols over others, as their yield was comparable.

3.
Trends Mol Med ; 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-39142973

ABSTRACT

Exploring and exploiting the microenvironmental similarities between pulmonary tuberculosis (TB) granulomas and malignant tumors has revealed new strategies for more efficacious host-directed therapies (HDTs). This opinion article discusses a paradigm shift in TB therapeutic development, drawing on critical insights from oncology. We summarize recent efforts to characterize and overcome key shared features between tumors and granulomas, including excessive fibrosis, abnormal angiogenesis, hypoxia and necrosis, and immunosuppression. We provide specific examples of cancer therapy application to TB to overcome these microenvironmental abnormalities, including matrix-targeting therapies, antiangiogenic agents, and immune-stimulatory drugs. Finally, we propose a new framework for combining HDTs with anti-TB agents to maximize therapeutic delivery and efficacy while reducing treatment dosages, duration, and harmful side effects to benefit TB patients.

4.
Clin Genitourin Cancer ; 22(5): 102143, 2024 Jun 24.
Article in English | MEDLINE | ID: mdl-39032202

ABSTRACT

INTRODUCTION: The renin-angiotensin system (RAS) has been demonstrated to modulate cell proliferation, desmoplasia, angiogenesis and immunosuppression. We examined the association of RAS inhibitors (RASi)-namely angiotensin converting enzyme inhibitors (ACEi) and angiotensin receptor blockers (ARB)-with neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) preceding radical cystectomy (RC). PATIENTS AND METHODS: We retrospectively investigated concurrent RASi use with NAC prior to RC in 302 patients with MIBC from 3 academic institutions. Outcomes included pathologic complete response (pCR) and overall survival (OS). Pathologic features, performance status (PS), clinical stage, type/number of cycles of NAC, and toxicities were collected. RESULTS: Overall pCR rate was 26.2% and 5-year OS was 62%. Concurrent ACEi intake with NAC approached significance for association with pCR (odds ratio [OR] = 1.71; 95% CI, 0.94-3.11; P = .077). Patients with cT3/4N0-N1 disease receiving ACEi had higher pCR rates (30.8% vs. 17.7%, P = .056) than those not on ACEi. Female sex had a statistically significant favorable interaction for pCR with ACEi intake (P = .044). ACEi intake was not associated with OS, while pCR, PS and lower clinical stage were significantly associated with improved OS. CONCLUSION: ACEi intake is potentially associated with increased pCR in patients with MIBC receiving NAC prior to RC, and this association is more pronounced in patients with higher clinical stage of disease at the initiation of therapy and female sex. Our data suggest the potential relevance of the RAS as a therapeutic target in aggressive MIBC.

6.
PLoS One ; 19(5): e0301780, 2024.
Article in English | MEDLINE | ID: mdl-38820409

ABSTRACT

Critical illness, such as severe COVID-19, is heterogenous in presentation and treatment response. However, it remains possible that clinical course may be influenced by dynamic and/or random events such that similar patients subject to similar injuries may yet follow different trajectories. We deployed a mechanistic mathematical model of COVID-19 to determine the range of possible clinical courses after SARS-CoV-2 infection, which may follow from specific changes in viral properties, immune properties, treatment modality and random external factors such as initial viral load. We find that treatment efficacy and baseline patient or viral features are not the sole determinant of outcome. We found patients with enhanced innate or adaptive immune responses can experience poor viral control, resolution of infection or non-infectious inflammatory injury depending on treatment efficacy and initial viral load. Hypoxemia may result from poor viral control or ongoing inflammation despite effective viral control. Adaptive immune responses may be inhibited by very early effective therapy, resulting in viral load rebound after cessation of therapy. Our model suggests individual disease course may be influenced by the interaction between external and patient-intrinsic factors. These data have implications for the reproducibility of clinical trial cohorts and timing of optimal treatment.


Subject(s)
COVID-19 , Models, Theoretical , SARS-CoV-2 , Viral Load , Humans , COVID-19/immunology , COVID-19/virology , SARS-CoV-2/immunology , Adaptive Immunity , Immunity, Innate , COVID-19 Drug Treatment
7.
Elife ; 132024 May 24.
Article in English | MEDLINE | ID: mdl-38787918

ABSTRACT

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.


Cancer cells convert nutrients into energy differently compared to healthy cells. This difference in metabolism allows them to grow and divide more quickly and sometimes to migrate to different areas of the body. The environment around cancer cells ­ known as the tumor microenvironment ­ contains a variety of different cells and blood vessels, which are bathed in interstitial fluid. This microenvironment provides nutrients for the cancer cells to metabolize, and therefore influences how well a tumor grows and how it might respond to treatment. Recent advances with techniques such as mass spectrometry, which can measure the chemical composition of a substance, have allowed scientists to measure nutrient levels in the tumor microenvironments of mice. However, it has been more difficult to conduct such studies in humans, as well as to compare the tumor microenvironment to the healthy tissue the tumors arose from. Abbott, Ali, Reinfeld et al. aimed to fill this gap in knowledge by using mass spectrometry to measure the nutrient levels in the tumor microenvironment of 55 patients undergoing surgery to remove kidney tumors. Comparing the type and levels of nutrients in the tumor interstitial fluid, the neighboring healthy kidney and the blood showed that nutrients in the tumor and healthy kidney were more similar to each other than those in the blood. For example, both the tumor and healthy kidney interstitial fluids contained less glucose than the blood. However, the difference between nutrient composition in the tumor and healthy kidney interstitial fluids was insignificant, suggesting that the healthy kidney and its tumor share a similar environment. Taken together, the findings indicate that kidney cancer cells must adapt to the nutrients available in the kidney, rather than changing what nutrients are available in the tissue. Future studies will be required to investigate whether this finding also applies to other types of cancer. A better understanding of how cancer cells adapt to their environments may aid the development of drugs that aim to disrupt the metabolism of tumors.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Metabolomics , Tumor Microenvironment , Carcinoma, Renal Cell/blood , Carcinoma, Renal Cell/chemistry , Carcinoma, Renal Cell/pathology , Kidney/metabolism , Kidney/pathology , Lipidomics , Principal Component Analysis , Humans , Kidney Neoplasms/blood , Kidney Neoplasms/chemistry , Kidney Neoplasms/pathology , Glucose/analysis
8.
Cell Rep Med ; 5(3): 101436, 2024 Mar 19.
Article in English | MEDLINE | ID: mdl-38508146

ABSTRACT

This study introduces a tailored COVID-19 model for patients with cancer, incorporating viral variants and immune-response dynamics. The model aims to optimize vaccination strategies, contributing to personalized healthcare for vulnerable groups.


Subject(s)
COVID-19 , Neoplasms , Humans , COVID-19 Vaccines/therapeutic use , COVID-19/prevention & control , Vaccination
9.
Proc Natl Acad Sci U S A ; 121(14): e2321336121, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38530888

ABSTRACT

Host-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas. Granulomas feature an overabundance of ECM and compressed blood vessels, both of which are effectively reduced by losartan treatment in the rabbit model of TB. Combining both HDTs promotes secretion of proinflammatory cytokines and improves anti-TB drug delivery. Finally, alone and in combination with second-line antitubercular agents (moxifloxacin or bedaquiline), these HDTs significantly reduce bacterial burden. RNA sequencing analysis of HDT-treated lung and granuloma tissues implicates up-regulated antimicrobial peptide and proinflammatory gene expression by ciliated epithelial airway cells as a putative mechanism of the observed antitubercular benefits in the absence of chemotherapy. These findings demonstrate that bevacizumab and losartan are well-tolerated stroma-targeting HDTs, normalize the granuloma microenvironment, and improve TB outcomes, providing the rationale to clinically test this combination in TB patients.


Subject(s)
Latent Tuberculosis , Mycobacterium tuberculosis , Tuberculosis , Humans , Animals , Rabbits , Bevacizumab/pharmacology , Losartan/pharmacology , Tuberculosis/microbiology , Antitubercular Agents/pharmacology , Granuloma , Latent Tuberculosis/microbiology
10.
Front Immunol ; 15: 1339232, 2024.
Article in English | MEDLINE | ID: mdl-38495879

ABSTRACT

Introduction: Exercise is recommended as an adjunct therapy in cancer, but its effectiveness varies. Our hypothesis is that the benefit depends on the exercise intensity. Methods: We subjected mice to low intensity (Li), moderate intensity (Mi) or high intensity (Hi) exercise, or untrained control (Co) groups based on their individual maximal running capacity. Results: We found that exercise intensity played a critical role in tumor control. Only Mi exercise delayed tumor growth and reduced tumor burden, whereas Li or Hi exercise failed to exert similar antitumor effects. While both Li and Mi exercise normalized the tumor vasculature, only Mi exercise increased tumor infiltrated CD8+ T cells, that also displayed enhanced effector function (higher proliferation and expression of CD69, INFγ, GzmB). Moreover, exercise induced an intensity-dependent mobilization of CD8+ T cells into the bloodstream. Conclusion: These findings shed light on the intricate relationship between exercise intensity and cancer, with implications for personalized and optimal exercise prescriptions for tumor control.


Subject(s)
Neoplasms , Physical Conditioning, Animal , Running , Humans , Mice , Animals , Exercise Therapy , CD8-Positive T-Lymphocytes
11.
Cancer Cell ; 42(4): 509-512, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38458186

ABSTRACT

Tumor invasion into the lymphatic vasculature represents a critical step during malignant progression of epithelial cancers. In this issue of Cancer Cell, Zheng et al. unravel how cancer-associated fibroblasts interact with lymphatic endothelial cells and the extracellular matrix to promote lymphatic tumor invasion and suggest that these processes could be treatment targets.


Subject(s)
Lymphatic Vessels , Urinary Bladder Neoplasms , Humans , Endothelial Cells , Lymphatic Metastasis/pathology , Urinary Bladder Neoplasms/pathology , Lymphatic Vessels/pathology , Neoplasm Invasiveness/pathology
12.
J Affect Disord ; 351: 904-914, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38325605

ABSTRACT

BACKGROUND: Major depressive disorder (MDD) and postpartum depression (PPD) are disabling conditions. This integrated analysis of MDD and PPD clinical trials investigated the impact of zuranolone-a positive allosteric modulator of synaptic and extrasynaptic GABAA receptors and neuroactive steroid under investigation for adults with MDD and approved as an oral, once-daily, 14-day treatment course for adults with PPD in the US-on health-related quality of life, including functioning and well-being, as assessed using the 36-item Short Form Health Survey V2 (SF-36). METHODS: Integrated data from 3 MDD (201B, MOUNTAIN, WATERFALL) and 1 PPD trial (ROBIN) for individual SF-36 domains were compared for zuranolone (30- and 50-mg) vs placebo at Day (D)15 and D42. Comparisons between zuranolone responders (≥50 % reduction from baseline in 17-item Hamilton Depression Rating Scale total score) and nonresponders were assessed. RESULTS: Overall, 1003 patients were included (zuranolone, n = 504; placebo, n = 499). Significant differences in change from baseline (CFB) to D15 for patients in zuranolone vs placebo groups were observed in 6/8 domains; changes were sustained or improved at D42, with significant CFB differences for all 8 domains. Zuranolone responders had significantly higher CFB scores vs nonresponders for all domains at D15 and D42 (p < 0.001). LIMITATIONS: Two zuranolone doses were integrated across populations of 2 disease states with potential differences in functioning, comorbidities, and patient demographics. All p-values presented are nominal. CONCLUSIONS: Integrated data across 4 zuranolone clinical trials showed improvements in functioning and well-being across all SF-36 domains. Benefits persisted after completion of treatment course at D42.


Subject(s)
Depressive Disorder, Major , Pyrazoles , Adult , Female , Humans , Depressive Disorder, Major/drug therapy , Double-Blind Method , Pregnanolone/adverse effects , Quality of Life , Randomized Controlled Trials as Topic , Treatment Outcome
13.
PLoS Comput Biol ; 20(2): e1011847, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38335224

ABSTRACT

Physiological abnormalities in pulmonary granulomas-pathological hallmarks of tuberculosis (TB)-compromise the transport of oxygen, nutrients, and drugs. In prior studies, we demonstrated mathematically and experimentally that hypoxia and necrosis emerge in the granuloma microenvironment (GME) as a direct result of limited oxygen availability. Building on our initial model of avascular oxygen diffusion, here we explore additional aspects of oxygen transport, including the roles of granuloma vasculature, transcapillary transport, plasma dilution, and interstitial convection, followed by cellular metabolism. Approximate analytical solutions are provided for oxygen and glucose concentration, interstitial fluid velocity, interstitial fluid pressure, and the thickness of the convective zone. These predictions are in agreement with prior experimental results from rabbit TB granulomas and from rat carcinoma models, which share similar transport limitations. Additional drug delivery predictions for anti-TB-agents (rifampicin and clofazimine) strikingly match recent spatially-resolved experimental results from a mouse model of TB. Finally, an approach to improve molecular transport in granulomas by modulating interstitial hydraulic conductivity is tested in silico.


Subject(s)
Mycobacterium tuberculosis , Tuberculosis , Animals , Mice , Rabbits , Oxygen/metabolism , Tuberculosis/drug therapy , Tuberculosis/pathology , Granuloma/pathology , Disease Models, Animal , Nutrients , Mycobacterium tuberculosis/metabolism
14.
Cancer Immunol Res ; 12(4): 400-412, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38260999

ABSTRACT

Intrahepatic cholangiocarcinoma (ICC) has limited therapeutic options and a dismal prognosis. Adding blockade of the anti-programmed cell death protein (PD)-1 pathway to gemcitabine/cisplatin chemotherapy has recently shown efficacy in biliary tract cancers but with low response rates. Here, we studied the effects of anti-cytotoxic T lymphocyte antigen (CTLA)-4 when combined with anti-PD-1 and gemcitabine/cisplatin in orthotopic murine models of ICC. This combination therapy led to substantial survival benefits and reduction of morbidity in two aggressive ICC models that were resistant to immunotherapy alone. Gemcitabine/cisplatin treatment increased tumor-infiltrating lymphocytes and normalized the ICC vessels and, when combined with dual CTLA-4/PD-1 blockade, increased the number of activated CD8+Cxcr3+IFNγ+ T cells. CD8+ T cells were necessary for the therapeutic benefit because the efficacy was compromised when CD8+ T cells were depleted. Expression of Cxcr3 on CD8+ T cells is necessary and sufficient because CD8+ T cells from Cxcr3+/+ but not Cxcr3-/- mice rescued efficacy in T cell‒deficient mice. Finally, rational scheduling of anti-CTLA-4 "priming" with chemotherapy followed by anti-PD-1 therapy achieved equivalent efficacy with reduced overall drug exposure. These data suggest that this combination approach should be clinically tested to overcome resistance to current therapies in ICC patients.


Subject(s)
Cholangiocarcinoma , Cisplatin , Gemcitabine , Animals , Humans , Mice , CD8-Positive T-Lymphocytes , Cholangiocarcinoma/drug therapy , Cholangiocarcinoma/metabolism , Cisplatin/therapeutic use , CTLA-4 Antigen/antagonists & inhibitors , Gemcitabine/therapeutic use , Tumor Microenvironment
15.
bioRxiv ; 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38187626

ABSTRACT

The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.

16.
PLoS Comput Biol ; 19(12): e1011740, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38113269

ABSTRACT

Intratumoral injection of immunotherapy aims to maximize its activity within the tumor. However, cytokines are cleared via tumor vessels and escape from the tumor periphery into the host-tissue, reducing efficacy and causing toxicity. Thus, understanding the determinants of the tumor and immune response to intratumoral immunotherapy should lead to better treatment outcomes. In this study, we developed a mechanistic mathematical model to determine the efficacy of intratumorally-injected conjugated-cytokines, accounting for properties of the tumor microenvironment and the conjugated-cytokines. The model explicitly incorporates i) the tumor vascular density and permeability and the tumor hydraulic conductivity, ii) conjugated-cytokines size and binding affinity as well as their clearance via the blood vessels and the surrounding tissue, and iii) immune cells-cancer cells interactions. Model simulations show how the properties of the tumor and of the conjugated-cytokines determine treatment outcomes and how selection of proper parameters can optimize therapy. A high tumor tissue hydraulic permeability allows for the uniform distribution of the cytokines into the tumor, whereas uniform tumor perfusion is required for sufficient access and activation of immune cells. The permeability of the tumor vessels affects the blood clearance of the cytokines and optimal values depend on the size of the conjugates. A size >5 nm in radius was found to be optimal, whereas the binding of conjugates should be high enough to prevent clearance from the tumor into the surrounding tissue. In conclusion, development of strategies to improve vessel perfusion and tissue hydraulic conductivity by reprogramming the microenvironment along with optimal design of conjugated-cytokines can enhance intratumoral immunotherapy.


Subject(s)
Immunotherapy , Neoplasms , Humans , Neoplasms/therapy , Cytokines , Models, Theoretical , Treatment Outcome , Tumor Microenvironment
17.
Front Immunol ; 14: 1297932, 2023.
Article in English | MEDLINE | ID: mdl-38213329

ABSTRACT

Background: The GL261 and CT2A syngeneic tumor lines are frequently used as immunocompetent orthotopic mouse models of human glioblastoma (huGBM) but demonstrate distinct differences in their responses to immunotherapy. Methods: To decipher the cell-intrinsic mechanisms that drive immunotherapy resistance in CT2A-luc and to define the aspects of human cancer biology that these lines can best model, we systematically compared their characteristics using whole exome and transcriptome sequencing, and protein analysis through immunohistochemistry, Western blot, flow cytometry, immunopeptidomics, and phosphopeptidomics. Results: The transcriptional profiles of GL261-luc2 and CT2A-luc tumors resembled those of some huGBMs, despite neither line sharing the essential genetic or histologic features of huGBM. Both models exhibited striking hypermutation, with clonal hotspot mutations in RAS genes (Kras p.G12C in GL261-luc2 and Nras p.Q61L in CT2A-luc). CT2A-luc distinctly displayed mesenchymal differentiation, upregulated angiogenesis, and multiple defects in antigen presentation machinery (e.g. Tap1 p.Y488C and Psmb8 p.A275P mutations) and interferon response pathways (e.g. copy number losses of loci including IFN genes and reduced phosphorylation of JAK/STAT pathway members). The defect in MHC class I expression could be overcome in CT2A-luc by interferon-γ treatment, which may underlie the modest efficacy of some immunotherapy combinations. Additionally, CT2A-luc demonstrated substantial baseline secretion of the CCL-2, CCL-5, and CCL-22 chemokines, which play important roles as myeloid chemoattractants. Conclusion: Although the clinical contexts that can be modeled by GL261 and CT2A for huGBM are limited, CT2A may be an informative model of immunotherapy resistance due to its deficits in antigen presentation machinery and interferon response pathways.


Subject(s)
Antigen Presentation , Glioblastoma , Humans , Animals , Mice , Janus Kinases , Signal Transduction , STAT Transcription Factors , Interferon-gamma , Immunotherapy
18.
Res Sq ; 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38234841

ABSTRACT

Wnt signaling plays a critical role in the progression and treatment outcome of glioblastoma (GBM). Here, we identified WNT7b as a heretofore unknown mechanism of resistance to immune checkpoint inhibition (αPD1) in GBM patients and murine models. Acquired resistance to αPD1 was found to be associated with the upregulation of Wnt7b and ß-catenin protein levels in GBM in patients and in a clinically relevant, stem-rich GBM model. Combining the porcupine inhibitor WNT974 with αPD1 prolonged the survival of GBM-bearing mice. However, this combination had a dichotomous response, with a subset of tumors showing refractoriness. WNT974 and αPD1 expanded a subset of DC3-like dendritic cells (DCs) and decreased the granulocytic myeloid-derived suppressor cells (gMDSCs) in the tumor microenvironment (TME). By contrast, monocytic MDSCs (mMDSCs) increased, while T-cell infiltration remained unchanged, suggesting potential TME-mediated resistance. Our preclinical findings warrant the testing of Wnt7b/ß-catenin combined with αPD1 in GBM patients with elevated Wnt7b/ß-catenin signaling.

SELECTION OF CITATIONS
SEARCH DETAIL