Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Am Chem Soc ; 146(1): 57-61, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38109785

ABSTRACT

The exploration of fourth-period organoelements, particularly organoseleniums in their highest VI oxidation state, is limited owing to their stability and synthesis. Herein, the isolation of a new class of quinolinyl-embedded, hexavalent selenium(VI) benzoselenonates has been discussed and further evaluated for a metal-free electrocatalytic hydrogen evolution reaction (HER). The Se(VI) benzoselenonates exhibited high Faradaic efficiency (F.E.) of metal-free H2 gas production up to 86% with a very good turnover number (TON) up to 43 and moderate overpotential (η) of 500 mV; in the presence of mild acetic acid source in a less deprotonating DMF solvent. Taken together with various (NMR, UV-vis, and EPR) spectroscopic and DFT computation studies, a plausible HER pathway is proposed, which suggests that the electrochemical reduction of quinolinyl ring is the initiation step and Se(VI) acts as the reaction site by involving a hydridic type of intermediate for the electrochemical H2 gas generation.

2.
Dalton Trans ; 52(1): 159-174, 2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36475549

ABSTRACT

Selenium-derived electrocatalysts have been well explored for electrocatalytic hydrogen evolution reactions to mimic hydrogenase-like activity; however, the stability of these synthetic mimics is yet to be enhanced. In this study, we report the synthesis and characterization of a series of 1,10-phenanthroline-cobalt(II) phenolate selenoether complexes using 1,10-phenanthroline and 6-nitro-1,10-phenanthroline-Co(II)-dichloride and substituted bis-selenophenolate ligands. The synthesized cobalt(II) phenolate selenoether complexes have been characterized by CHN analysis, mass spectrometry, single crystal XRD, and UV-visible absorption spectroscopy. These complexes show electrocatalytic proton reduction from acetic acid at an overpotential of 0.45-0.56 V vs. Fc+/Fc and surpass previously reported selenium and sulfur-containing electrocatalysts. Furthermore, gas analysis from control potential electrolysis confirms that the cobalt(II) selenoethers act as electrocatalysts to produce H2 with a faradaic efficiency of 43-83% and show a turnover number of 3.24-58.60 molcat-1. The hydrogen evolution reaction (HER) was probed using deuterated acetic acid, which demonstrates an inverse kinetic isotopic effect (KIE) and is consistent with the formation of metal hydride intermediates. Furthermore, control experiments (post-dip analysis and multiple CV studies) have been performed to support the catalysis being due to a homogeneous process. Acid titration using UV-visible spectroscopy reveals that protonation is the prior step for electrocatalysis and assists in the formation of a cobalt hydride intermediate, which upon reaction with a proton generates hydrogen gas.


Subject(s)
Hydrogenase , Selenium , Protons , Hydrogenase/chemistry , Cobalt/chemistry , Hydrogen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL