Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Diabetes Metab Disord ; 22(1): 385-392, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37255782

ABSTRACT

Purpose: In diabetes, multi-organ level dysfunction arising from metabolic complications is reported to influence the pharmacokinetics (PK) profile of many drugs. Hence, the present study was planned in rats to evaluate the effect of diabetes on the PK profile of cefpodoxime, a widely prescribed oral antibiotic. Method: PK profile of cefpodoxime was assessed after oral administration of cefpodoxime proxetil (10 and 20 mg/kg) and intravenous (i.v) administration of cefpodoxime sodium (10 mg/kg) in normal and streptozotocin induced diabetic rats. To evaluate the impact of diabetes on oral absorption and serum protein binding, in situ intestinal permeability and in vitro serum protein binding studies were performed for cefpodoxime using Single Pass Intestinal Perfusion model (SPIP) and ultracentrifugation technique, respectively. Result: In diabetic rats, there was significant (p < 0.01) decrease in maximum concentration (Cmax) and area under the curve (AUC) of cefpodoxime by both oral and intravenous route, which was attributed to augmented clearance of cefpodoxime. There was no change in the time to achieve Cmax (Tmax) suggesting no alteration in oral absorption which was further confirmed through unaltered intestinal permeability in diabetic rats. The protein binding in diabetic rats also remained unchanged, indicating no influence of protein binding on elevated clearance. Conclusion: The plasma exposure of cefpodoxime, a renally eliminated drug was significantly lowered in diabetic rats due to enhanced glomerular filtration. However, this observation needs to be confirmed through well controlled clinical trials.

2.
FASEB J ; 33(4): 5626-5640, 2019 04.
Article in English | MEDLINE | ID: mdl-30640524

ABSTRACT

During physiologic stresses, like micronutrient starvation, infection, and cancer, the cytosolic moonlighting protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is trafficked to the plasma membrane (PM) and extracellular milieu (ECM). Our work demonstrates that GAPDH mobilized to the PM, and the ECM does not utilize the classic endoplasmic reticulum-Golgi route of secretion; instead, it is first selectively translocated into early and late endosomes from the cytosol via microautophagy. GAPDH recruited to this common entry point is subsequently delivered into multivesicular bodies, leading to its membrane trafficking through secretion via exosomes and secretory lysosomes. We present evidence that both pathways of GAPDH membrane trafficking are up-regulated upon iron starvation, potentially by mobilization of intracellular calcium. These pathways also play a role in clearance of misfolded intracellular polypeptide aggregates. Our findings suggest that cells build in redundancy for vital cellular pathways to maintain micronutrient homeostasis and prevent buildup of toxic intracellular misfolded protein refuse.-Chauhan, A. S., Kumar, M., Chaudhary, S., Dhiman, A., Patidar, A., Jakhar, P., Jaswal, P., Sharma, K., Sheokand, N., Malhotra, H., Raje, C. I., Raje. M. Trafficking of a multifunctional protein by endosomal microautophagy: linking two independent unconventional secretory pathways.


Subject(s)
Endosomes/metabolism , Microautophagy/physiology , Protein Transport/physiology , Secretory Pathway/physiology , Animals , Autophagy/physiology , Cell Line , Cell Membrane/metabolism , Cell Movement/physiology , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , Exosomes/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Golgi Apparatus/metabolism , Lysosomes/metabolism , Mice , Multivesicular Bodies/metabolism , Up-Regulation/physiology
3.
J Biomed Nanotechnol ; 12(5): 1101-14, 2016 May.
Article in English | MEDLINE | ID: mdl-27305829

ABSTRACT

Due to their abundant ubiquitous presence, rapid uptake and increased requirement in neoplastic tissue, the delivery of the iron carrier macromolecules transferrin (Tf) and lactoferrin (Lf) into mammalian cells is the subject of intense interest for delivery of drugs and other target molecules into cells. Utilizing exosomes obtained from cells of diverse origin we confirmed the presence of the multifunctional protein glyceraldehyde-3-phosphate dehydrogenase (GAPDH) which has recently been characterized as a Tf and Lf receptor. Using a combination of biochemical, biophysical and imaging based methodologies, we demonstrate that GAPDH present in exosomes captures Tf and Lf and subsequently effectively delivers these proteins into mammalian cells. Exosome vesicles prepared had a size of 51.2 ± 23.7 nm. They were found to be stable in suspension with a zeta potential (ζ-potential) of -28.16 ± 1.15 mV. Loading of Tf/Lf did not significantly affect ζ-potential of the exosomes. The carrier protein loaded exosomes were able to enhance the delivery of Tf/Lf by 2 to 3 fold in a diverse panel of cell types. Ninety percent of the internalized cargo via this route was found to be specifically delivered into late endosome and lysosomes. We also found exosomes to be tunable nano vehicles for cargo delivery by varying the amount of GAPDH associated with exosome. The current study opens a new avenue of research for efficient delivery of these vital iron carriers into cells employing exosomes as a nano delivery vehicle.


Subject(s)
Cell Compartmentation , Drug Carriers/chemistry , Exosomes/chemistry , Lactoferrin/administration & dosage , Macromolecular Substances/chemistry , Nanoparticles/chemistry , Transferrin/administration & dosage , Animals , CHO Cells , Cricetinae , Cricetulus , Drug Delivery Systems , Endosomes/metabolism , Exosomes/ultrastructure , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Hep G2 Cells , Humans , Iron/metabolism , Rabbits
4.
Sci Rep ; 5: 18465, 2015 Dec 17.
Article in English | MEDLINE | ID: mdl-26672975

ABSTRACT

Lactoferrin is a crucial nutritionally important pleiotropic molecule and iron an essential trace metal for all life. The current paradigm is that living organisms have evolved specific membrane anchored receptors along with iron carrier molecules for regulated absorption, transport, storage and mobilization of these vital nutrients. We present evidence for the existence of non-canonical pathway whereby cells actively forage these vital resources from beyond their physical boundaries, by secreting the multifunctional housekeeping enzyme Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) into the extracellular milieu. This effect's an autocrine/paracrine acquisition of target ligand into the cell. Internalization by this route is extensively favoured even by cells that express surface receptors for lactoferrin and involves urokinase plasminogen activator receptor (uPAR). We also demonstrate the operation of this phenomenon during inflammation, as an arm of the innate immune response where lactoferrin denies iron to invading microorganisms by chelating it and then itself being sequestered into surrounding host cells by GAPDH.


Subject(s)
Extracellular Space/metabolism , Glyceraldehyde-3-Phosphate Dehydrogenases/metabolism , Iron/metabolism , Lactoferrin/metabolism , Animals , Biological Transport , Cell Line , Cell Line, Tumor , Cells, Cultured , Duodenum/metabolism , Endosomes/metabolism , Endosomes/ultrastructure , Extracellular Space/enzymology , Female , Flow Cytometry , Fluorescence Resonance Energy Transfer , Humans , Mice, Inbred BALB C , Microscopy, Fluorescence , Microscopy, Immunoelectron , Receptors, Urokinase Plasminogen Activator/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL