Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
1.
Am J Med Genet A ; 194(7): e63588, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38459613

ABSTRACT

American College of Medical Genetics and Genomics (ACMG) recommends offering Tier 3 carrier screening to pregnant patients and those planning a pregnancy for conditions with a carrier frequency of ≥1/200 (96 genes for autosomal recessive [AR] conditions). Certain AR conditions referred to as Finnish disease heritage (FINDIS) have a higher prevalence in Finland than elsewhere. Data from gnomAD v2.1 were extracted to assess carrier frequencies for ACMG-recommended AR and FINDIS AR and X-linked genes in Finnish, non-Finnish European, and Ashkenazi Jewish populations. Following variants were considered: ClinVar pathogenic or likely pathogenic, loss-of-function, and Finnish founder variants. Gene carrier (GCR), cumulative carrier (CCR), and at-risk couple rates (ACR) were estimated. In Finnish population, 47 genes had a GCR of ≥0.5%. CCRs were 52.7% (Finnish), 48.9% (non-Finnish European), and 58.3% (Ashkenazi Jewish), whereas ACRs were 1.4%, 0.93%, and 2.3% respectively. Approximately 141 affected children with analyzed AR conditions are estimated to be born in Finland annually. Eighteen genes causing FINDIS conditions had a GCR of ≥0.5% in the Finnish population but were absent in the ACMG Tier 3 gene list. Two genes (RECQL4 and RMRP) had GCR of ≥0.5% either in non-Finnish Europeans or Ashkenazi Jewish populations. Results highlight the need for careful curation of carrier screening panels.


Subject(s)
Genetic Carrier Screening , Genetic Testing , Jews , Humans , Finland/epidemiology , Jews/genetics , Genetic Carrier Screening/methods , Female , Genetic Testing/methods , Gene Frequency , Heterozygote , Databases, Genetic , Pregnancy , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/epidemiology , Genetic Diseases, Inborn/diagnosis , Male , White People/genetics , Genes, Recessive/genetics , Genomics/methods
2.
J Clin Oncol ; 42(13): 1477-1487, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38422475

ABSTRACT

PURPOSE: Family history (FH) and pathogenic variants (PVs) are used for guiding risk surveillance in selected high-risk women but little is known about their impact for breast cancer screening on population level. In addition, polygenic risk scores (PRSs) have been shown to efficiently stratify breast cancer risk through combining information about common genetic factors into one measure. METHODS: In longitudinal real-life data, we evaluate PRS, FH, and PVs for stratified screening. Using FinnGen (N = 117,252), linked to the Mass Screening Registry for breast cancer (1992-2019; nationwide organized biennial screening for age 50-69 years), we assessed the screening performance of a breast cancer PRS and compared its performance with FH of breast cancer and PVs in moderate- (CHEK2)- to high-risk (PALB2) susceptibility genes. RESULTS: Effect sizes for FH, PVs, and high PRS (>90th percentile) were comparable in screening-aged women, with similar implications for shifting age at screening onset. A high PRS identified women more likely to be diagnosed with breast cancer after a positive screening finding (positive predictive value [PPV], 39.5% [95% CI, 37.6 to 41.5]). Combinations of risk factors increased the PPVs up to 45% to 50%. A high PRS conferred an elevated risk of interval breast cancer (hazard ratio [HR], 2.78 [95% CI, 2.00 to 3.86] at age 50 years; HR, 2.48 [95% CI, 1.67 to 3.70] at age 60 years), and women with a low PRS (<10th percentile) had a low risk for both interval- and screen-detected breast cancers. CONCLUSION: Using real-life screening data, this study demonstrates the effectiveness of a breast cancer PRS for risk stratification, alone and combined with FH and PVs. Further research is required to evaluate their impact in a prospective risk-stratified screening program, including cost-effectiveness.


Subject(s)
Breast Neoplasms , Early Detection of Cancer , Genetic Predisposition to Disease , Humans , Breast Neoplasms/genetics , Breast Neoplasms/diagnosis , Female , Middle Aged , Early Detection of Cancer/methods , Aged , Risk Assessment , Risk Factors
3.
JID Innov ; 3(4): 100203, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37533579

ABSTRACT

Early-onset, persistent atopic dermatitis (AD) is proposed as a distinct subgroup that may have specific genotypic features. FLG gene loss-of-function variants are the best known genetic factors contributing to epidermal barrier impairment and eczema severity. In a cohort of 140 Finnish children with early-onset moderate-to-severe AD, we investigated the effect of coding variation in FLG and 13 other genes with epidermal barrier or immune function through the use of targeted amplicon sequencing and genotyping. A FLG loss-of-function variant (Arg501Ter, Ser761fs, Arg2447Ter, or Ser3247Ter) was identified in 20 of 140 patients showing higher transepidermal water loss values than patients without these variants. Total FLG loss-of-function variant frequency (7.14%) was significantly higher than in the general Finnish population (2.34%). When tested separately, only Arg2447Ter showed a significant association with AD (P = 0.003104). In addition, a modest association with moderate-to-severe pediatric AD was seen for rs12730241 and rs6587667 (FLG2:Gly137Glu). Loss-of-function variants, previously reported pathogenic variants, or statistically significant enrichment of nonsynonymous coding region variants were not found in the 13 candidate genes studied by amplicon sequencing. However, higher IgE and eosinophil counts were found in carriers of potentially pathogenic DOCK8 missense variants, suggesting that the role of DOCK8 variation in AD should be further investigated in larger cohorts.

4.
Clin Case Rep ; 10(10): e6455, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36245460

ABSTRACT

Classical Ehlers-Danlos syndrome (cEDS) is a rare inherited autosomal dominant connective tissue disorder with core clinical features including skin hyperextensibility, abnormal scarring, and generalized joint hypermobility. Classical EDS is predominantly caused by small pathogenic variants in the genes COL5A1 and COL5A2 and occasionally by a COL1A1 point mutation p.(Arg312Cys), while gross deletions or duplications are uncommon. Gonosomal mosaicism is thought to be exceedingly rare with only two cases reported in the literature. We report a child with cEDS due to a rare gross deletion of exons 2-65 in the COL5A1 gene, inherited from an unaffected mosaic father. The level of mosaicism in the father was approximately 43% in leucocyte cells and 30% in DNA extracted from skin. Our results expand the allelic spectrum of cEDS variants and suggest that parental mosaicism needs to be considered in patients with suspected cEDS, given its implication for genetic counseling.

5.
Am J Med Genet A ; 182(11): 2605-2610, 2020 11.
Article in English | MEDLINE | ID: mdl-32902138

ABSTRACT

The multiple pterygium syndromes (MPS) are rare disorders with disease severity ranging from lethal to milder forms. The nonlethal Escobar variant MPS (EVMPS) is characterized by multiple pterygia and arthrogryposis, as well as various additional features including congenital anomalies. The genetic etiology of EVMPS is heterogeneous and the diagnosis has been based either on the detection of pathogenic CHRNG variants (~23% of patients), or suggestive clinical features. We describe four patients with a clinical suspicion of EVMPS who manifested with multiple pterygia, mild flexion contractures of several joints, and vertebral anomalies. We revealed recessively inherited MYH3 variants as the underlying cause in all patients: two novel variants, c.1053C>G, p.(Tyr351Ter) and c.3102+5G>C, as compound heterozygous with the hypomorphic MYH3 variant c.-9+1G>A. Recessive MYH3 variants have been previously associated with spondylocarpotarsal synostosis syndrome. Our findings now highlight multiple pterygia as an important feature in patients with recessive MYH3 variants. Based on all patients with recessive MYH3 variants reported up to date, we consider that this disease entity should be designated as "Contractures, pterygia, and variable skeletal fusions syndrome 1B," as recently suggested by OMIM. Our findings underline the importance of analyzing MYH3 in the differential diagnosis of EVMPS, particularly as the hypomorphic MYH3 variant might remain undetected by routine exome sequencing.


Subject(s)
Abnormalities, Multiple/genetics , Cytoskeletal Proteins/genetics , Genes, Recessive , Genetic Variation , Malignant Hyperthermia/genetics , Skin Abnormalities/genetics , Child , Child, Preschool , Contracture/genetics , Female , Gene Deletion , Heterozygote , Humans , Lordosis/genetics , Male , Mutation , Pedigree , Phenotype , Scoliosis/genetics , Sequence Analysis, DNA , Siblings , Exome Sequencing
6.
Am J Med Genet A ; 179(7): 1362-1365, 2019 07.
Article in English | MEDLINE | ID: mdl-31059209

ABSTRACT

Fetal akinesia deformation sequence (FADS) and lethal multiple pterygium syndrome (LMPS) are clinically overlapping syndromes manifesting with reduced or absent fetal movement, arthrogryposis, and several anomalies during fetal life. The etiology of these syndromes is heterogeneous, and in many cases it remains unknown. In order to determine the genetic etiology of FADS in two fetuses with fetal akinesia, arthrogryposis, edema, and partial cleft palate, we utilized exome sequencing. Our investigations revealed a homozygous nonsense variant [c.1116C>A, p.(Cys372Ter)] in the SLC18A3 gene, which encodes for the vesicular acetylcholine transporter (VAChT) responsible for active transport of acetylcholine in the neuromuscular junction. This is the first description of a nonsense variant in the SLC18A3 gene, as only missense variants and whole gene deletions have been previously identified in patients. The previously detected SLC18A3 defects have been associated with congenital myasthenic syndromes, and therefore our findings extend the clinical spectrum of SLC18A3 defects to severe prenatal phenotypes. Our findings suggest that nonsense variants in SLC18A3 cause a more severe phenotype than missense variants and are in line with previous studies showing a lethal phenotype in VAChT knockout mice. Our results underline the importance of including SLC18A3 sequencing in the differential diagnostics of fetuses with arthrogryposis, FADS, or LMPS of unknown etiology.


Subject(s)
Arthrogryposis , Mutation, Missense , Vesicular Acetylcholine Transport Proteins/genetics , Animals , Female , Humans , Mice , Mice, Knockout , Pregnancy
7.
PLoS One ; 13(8): e0203313, 2018.
Article in English | MEDLINE | ID: mdl-30157244

ABSTRACT

INTRODUCTION: Osteoarthritis (OA) is the most common degenerative joint disease and one of the major causes of disability worldwide. It is a multifactorial disorder with a significant genetic component. The heritability of OA has been estimated to be 60% for hip OA and 39% for knee OA. Genetic factors behind OA are still largely unknown. Studying families with strong history of OA, facilitates examining the co-segregation of genetic variation and OA. The aim of this study was to identify new, rare genetic factors and novel candidate genes for OA. METHODS: Eight patients from three Finnish families with hip and knee OA were studied using whole exome sequencing. We focused on rare exonic variants with predicted pathogenicity and variants located in active promoter or strong enhancer regions. Expression of identified candidate genes were studied in bone and cartilage tissues and the observed variants were investigated using bioinformatic analyses. RESULTS: Two rare variants co-segregated with OA in two families. In Family 8 a missense variant (c.628C>G, p.Arg210Gly) was observed in the OLIG3 gene that encodes a transcription factor known to be associated with rheumatoid arthritis and inflammatory polyarthritis. The Arg210Gly variant was estimated to be pathogenic by Polyphen-2 and Mutation taster and the locus is conserved among mammals. In Family 12 the observed variant (c.-127G>T) was located in the transcription start site of the FIP1L1 gene. FIP1L1 participates in the regulation of polyadenylation. The c.-127G>T is located in the transcription start site and may alter the DNA-binding of transcription factors. Both, OLIG3 and FIP1L1 were observed in human bone and cartilage. CONCLUSION: The identified variants revealed novel candidate genes for OA. OLIG3 and FIP1L1 have specific roles in transcription and may effect expression of other genes. Identified variants in these genes may thus have a role in the regulatory events leading to OA.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Genetic Predisposition to Disease , Genetic Variation , Osteoarthritis, Hip/genetics , Osteoarthritis, Knee/genetics , mRNA Cleavage and Polyadenylation Factors/genetics , Adult , Aged , Aged, 80 and over , Basic Helix-Loop-Helix Transcription Factors/metabolism , Bone and Bones/metabolism , Cartilage/metabolism , Computational Biology , Family , Female , Finland , Humans , Male , Middle Aged , Osteoarthritis, Hip/metabolism , Osteoarthritis, Knee/metabolism , RNA, Messenger/metabolism , Sequence Alignment , Exome Sequencing , mRNA Cleavage and Polyadenylation Factors/metabolism
8.
Brain ; 140(5): 1267-1279, 2017 05 01.
Article in English | MEDLINE | ID: mdl-28335020

ABSTRACT

Progressive encephalopathy with oedema, hypsarrhythmia, and optic atrophy (PEHO) syndrome is an early childhood onset, severe autosomal recessive encephalopathy characterized by extreme cerebellar atrophy due to almost total granule neuron loss. By combining homozygosity mapping in Finnish families with Sanger sequencing of positional candidate genes and with exome sequencing a homozygous missense substitution of leucine for serine at codon 31 in ZNHIT3 was identified as the primary cause of PEHO syndrome. ZNHIT3 encodes a nuclear zinc finger protein previously implicated in transcriptional regulation and in small nucleolar ribonucleoprotein particle assembly and thus possibly to pre-ribosomal RNA processing. The identified mutation affects a highly conserved amino acid residue in the zinc finger domain of ZNHIT3. Both knockdown and genome editing of znhit3 in zebrafish embryos recapitulate the patients' cerebellar defects, microcephaly and oedema. These phenotypes are rescued by wild-type, but not mutant human ZNHIT3 mRNA, suggesting that the patient missense substitution causes disease through a loss-of-function mechanism. Transfection of cell lines with ZNHIT3 expression vectors showed that the PEHO syndrome mutant protein is unstable. Immunohistochemical analysis of mouse cerebellar tissue demonstrated ZNHIT3 to be expressed in proliferating granule cell precursors, in proliferating and post-mitotic granule cells, and in Purkinje cells. Knockdown of Znhit3 in cultured mouse granule neurons and ex vivo cerebellar slices indicate that ZNHIT3 is indispensable for granule neuron survival and migration, consistent with the zebrafish findings and patient neuropathology. These results suggest that loss-of-function of a nuclear regulator protein underlies PEHO syndrome and imply that establishment of its spatiotemporal interaction targets will be the basis for developing therapeutic approaches and for improved understanding of cerebellar development.


Subject(s)
Brain Edema/genetics , Brain Edema/pathology , Cerebellum/pathology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/pathology , Neurons/pathology , Nuclear Proteins/genetics , Nuclear Proteins/physiology , Optic Atrophy/genetics , Optic Atrophy/pathology , Spasms, Infantile/genetics , Spasms, Infantile/pathology , Animals , COP9 Signalosome Complex , Cell Movement/genetics , Cell Movement/physiology , Cell Survival/genetics , Cell Survival/physiology , Cerebellum/metabolism , Edema/complications , Edema/genetics , Exome/genetics , Gene Editing , Gene Knockdown Techniques , Humans , Mice , Microcephaly/complications , Microcephaly/genetics , Mutation, Missense/genetics , Mutation, Missense/physiology , Neurons/metabolism , Nuclear Proteins/biosynthesis , Sequence Analysis, DNA , Transcription Factors/biosynthesis , Zebrafish
9.
Acta Derm Venereol ; 97(4): 456-463, 2017 Apr 06.
Article in English | MEDLINE | ID: mdl-27840886

ABSTRACT

The contribution of filaggrin null mutations to predicting atopic dermatitis (AD) treatment response is not clear, nor have such mutations been studied in the Finnish population. This study tested the association of the 4 most prevalent European FLG null mutations, the 2 Finnish enriched FLG null mutations, the FLG 12-repeat allele, and 50 additional epidermal barrier gene variants, with risk of AD, disease severity, clinical features, risk of other atopic diseases, age of onset, and treatment response in 501 patients with AD and 1,710 controls. AD, early-onset AD, palmar hyperlinearity, and asthma showed significant associations with the combined FLG null genotype. Disease severity and treatment response were independent of patient FLG status. Carrier frequencies of R501X, 2282del4, and S3247X were notably lower in Finns compared with reported frequencies in other populations. This data confirms FLG mutations as risk factors for AD in Finns, but also questions their feasibility as biomarkers in predicting treatment response.


Subject(s)
Dermatitis, Atopic/drug therapy , Dermatitis, Atopic/genetics , Immunosuppressive Agents/therapeutic use , Intermediate Filament Proteins/genetics , Mutation , Pharmacogenomic Variants , Adolescent , Adult , Case-Control Studies , Dermatitis, Atopic/diagnosis , Female , Filaggrin Proteins , Finland , Gene Frequency , Genetic Predisposition to Disease , Heterozygote , Homozygote , Humans , Male , Middle Aged , Pharmacogenetics , Phenotype , Prospective Studies , Severity of Illness Index , Treatment Outcome , Young Adult
10.
Am J Med Genet A ; 164A(7): 1713-33, 2014 Jul.
Article in English | MEDLINE | ID: mdl-24782230

ABSTRACT

Somatic mutations in the phosphatidylinositol/AKT/mTOR pathway cause segmental overgrowth disorders. Diagnostic descriptors associated with PIK3CA mutations include fibroadipose overgrowth (FAO), Hemihyperplasia multiple Lipomatosis (HHML), Congenital Lipomatous Overgrowth, Vascular malformations, Epidermal nevi, Scoliosis/skeletal and spinal (CLOVES) syndrome, macrodactyly, and the megalencephaly syndrome, Megalencephaly-Capillary malformation (MCAP) syndrome. We set out to refine the understanding of the clinical spectrum and natural history of these phenotypes, and now describe 35 patients with segmental overgrowth and somatic PIK3CA mutations. The phenotypic data show that these previously described disease entities have considerable overlap, and represent a spectrum. While this spectrum overlaps with Proteus syndrome (sporadic, mosaic, and progressive) it can be distinguished by the absence of cerebriform connective tissue nevi and a distinct natural history. Vascular malformations were found in 15/35 (43%) and epidermal nevi in 4/35 (11%) patients, lower than in Proteus syndrome. Unlike Proteus syndrome, 31/35 (89%) patients with PIK3CA mutations had congenital overgrowth, and in 35/35 patients this was asymmetric and disproportionate. Overgrowth was mild with little postnatal progression in most, while in others it was severe and progressive requiring multiple surgeries. Novel findings include: adipose dysregulation present in all patients, unilateral overgrowth that is predominantly left-sided, overgrowth that affects the lower extremities more than the upper extremities and progresses in a distal to proximal pattern, and in the most severely affected patients is associated with marked paucity of adipose tissue in unaffected areas. While the current data are consistent with some genotype-phenotype correlation, this cannot yet be confirmed.


Subject(s)
Genetic Association Studies , Phenotype , Phosphatidylinositol 3-Kinases/genetics , Adipose Tissue/pathology , Adolescent , Adult , Age of Onset , Child , Child, Preschool , Class I Phosphatidylinositol 3-Kinases , Female , Genotype , Humans , Hyperplasia/diagnosis , Hyperplasia/genetics , Infant , Infant, Newborn , Lipoma/diagnosis , Lipoma/genetics , Male , Middle Aged , Musculoskeletal Abnormalities/diagnosis , Musculoskeletal Abnormalities/genetics , Mutation , Nevus/diagnosis , Nevus/genetics , Organ Specificity/genetics , Vascular Malformations/diagnosis , Vascular Malformations/genetics , Young Adult
11.
Eur J Hum Genet ; 21(6): 659-65, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23249956

ABSTRACT

Population genetic studies on European populations have highlighted Italy as one of genetically most diverse regions. This is possibly due to the country's complex demographic history and large variability in terrain throughout the territory. This is the reason why Italy is enriched for population isolates, Sardinia being the best-known example. As the population isolates have a great potential in disease-causing genetic variants identification, we aimed to genetically characterize a region from northeastern Italy, which is known for isolated communities. Total of 1310 samples, collected from six geographically isolated villages, were genotyped at >145000 single-nucleotide polymorphism positions. Newly genotyped data were analyzed jointly with the available genome-wide data sets of individuals of European descent, including several population isolates. Despite the linguistic differences and geographical isolation the village populations still show the greatest genetic similarity to other Italian samples. The genetic isolation and small effective population size of the village populations is manifested by higher levels of genomic homozygosity and elevated linkage disequilibrium. These estimates become even more striking when the detected substructure is taken into account. The observed level of genetic isolation in Friuli-Venezia Giulia region is more extreme according to several measures of isolation compared with Sardinians, French Basques and northern Finns, thus proving the status of an isolate.


Subject(s)
Genetic Variation , Genetics, Population , White People/genetics , Cluster Analysis , Genome, Human/genetics , Homozygote , Humans , Italy , Linkage Disequilibrium/genetics , Models, Genetic , Polymorphism, Single Nucleotide/genetics
12.
J Med Genet ; 49(6): 391-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22693283

ABSTRACT

BACKGROUND: The progressive myoclonus epilepsies (PMEs) comprise a group of clinically and genetically heterogeneous disorders characterised by myoclonus, epilepsy, and neurological deterioration. This study aimed to identify the underlying gene(s) in childhood onset PME patients with unknown molecular genetic background. METHODS: Homozygosity mapping was applied on genome-wide single nucleotide polymorphism data of 18 Turkish patients. The potassium channel tetramerisation domain-containing 7 (KCTD7) gene, previously associated with PME in a single inbred family, was screened for mutations. The spatiotemporal expression of KCTD7 was assessed in cellular cultures and mouse brain tissue. RESULTS: Overlapping homozygosity in 8/18 patients defined a 1.5 Mb segment on 7q11.21 as the major candidate locus. Screening of the positional candidate gene KCTD7 revealed homozygous missense mutations in two of the eight cases. Screening of KCTD7 in a further 132 PME patients revealed four additional mutations (two missense, one in-frame deletion, and one frameshift-causing) in five families. Eight patients presented with myoclonus and epilepsy and one with ataxia, the mean age of onset being 19 months. Within 2 years after onset, progressive loss of mental and motor skills ensued leading to severe dementia and motor handicap. KCTD7 showed cytosolic localisation and predominant neuronal expression, with widespread expression throughout the brain. None of three polypeptides carrying patient missense mutations affected the subcellular distribution of KCTD7. DISCUSSION: These data confirm the causality of KCTD7 defects in PME, and imply that KCTD7 mutation screening should be considered in PME patients with onset around 2 years of age followed by rapid mental and motor deterioration.


Subject(s)
Mutation , Myoclonic Epilepsies, Progressive/genetics , Potassium Channels/genetics , Animals , Blotting, Western , Brain Chemistry , Cells, Cultured , Chromosome Mapping , Homozygote , Humans , Intracellular Space , Mice , Microscopy, Fluorescence , Pedigree , Phenotype , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Turkey
13.
Hum Mol Genet ; 20(13): 2686-95, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21505072

ABSTRACT

Phenotype mining is a novel approach for elucidating the genetic basis of complex phenotypic variation. It involves a search of rich phenotype databases for measures correlated with genetic variation, as identified in genome-wide genotyping or sequencing studies. An initial implementation of phenotype mining in a prospective unselected population cohort, the Northern Finland 1966 Birth Cohort (NFBC1966), identifies neurodevelopment-related traits-intellectual deficits, poor school performance and hearing abnormalities-which are more frequent among individuals with large (>500 kb) deletions than among other cohort members. Observation of extensive shared single nucleotide polymorphism haplotypes around deletions suggests an opportunity to expand phenotype mining from cohort samples to the populations from which they derive.


Subject(s)
DNA Copy Number Variations/genetics , Data Mining , Genetic Association Studies , Phenotype , Adolescent , Adult , Child , Child, Preschool , Cohort Studies , Databases, Factual , Female , Finland , Genetic Drift , Genetics, Population , Haplotypes , Humans , Infant , Male , Polymorphism, Single Nucleotide/genetics , Sequence Deletion/genetics , Young Adult
14.
Am J Hum Genet ; 86(2): 285-91, 2010 Feb 12.
Article in English | MEDLINE | ID: mdl-20159113

ABSTRACT

Genetic risk for multiple sclerosis (MS) is thought to involve both common and rare risk alleles. Recent GWAS and subsequent meta-analysis have established the critical role of the HLA locus and identified new common variants associated to MS. These variants have small odds ratios (ORs) and explain only a fraction of the genetic risk. To expose potentially rare, high-impact alleles, we conducted a GWAS of 68 distantly related cases and 136 controls from a high-risk internal isolate of Finland with increased prevalence and familial occurrence of MS. The top 27 loci with p < 10(-4) were tested in 711 cases and 1029 controls from Finland, and the top two findings were validated in 3859 cases and 9110 controls from more heterogeneous populations. SNP (rs744166) within the STAT3 gene was associated to MS (p = 2.75 x 10(-10), OR 0.87, confidence interval 0.83-0.91). The protective haplotype for MS in STAT3 is a risk allele for Crohn disease, implying that STAT3 represents a shared risk locus for at least two autoimmune diseases. This study also demonstrates the potential of special isolated populations in search for variants contributing to complex traits.


Subject(s)
Genetic Predisposition to Disease , Genome-Wide Association Study , Multiple Sclerosis/genetics , Polymorphism, Single Nucleotide/genetics , STAT3 Transcription Factor/genetics , Alleles , Base Pairing/genetics , Case-Control Studies , Genetics, Population , Haplotypes/genetics , Humans , Linkage Disequilibrium/genetics , Reproducibility of Results
15.
PLoS One ; 4(5): e5472, 2009.
Article in English | MEDLINE | ID: mdl-19424496

ABSTRACT

Using principal component (PC) analysis, we studied the genetic constitution of 3,112 individuals from Europe as portrayed by more than 270,000 single nucleotide polymorphisms (SNPs) genotyped with the Illumina Infinium platform. In cohorts where the sample size was >100, one hundred randomly chosen samples were used for analysis to minimize the sample size effect, resulting in a total of 1,564 samples. This analysis revealed that the genetic structure of the European population correlates closely with geography. The first two PCs highlight the genetic diversity corresponding to the northwest to southeast gradient and position the populations according to their approximate geographic origin. The resulting genetic map forms a triangular structure with a) Finland, b) the Baltic region, Poland and Western Russia, and c) Italy as its vertexes, and with d) Central- and Western Europe in its centre. Inter- and intra- population genetic differences were quantified by the inflation factor lambda (lambda) (ranging from 1.00 to 4.21), fixation index (F(st)) (ranging from 0.000 to 0.023), and by the number of markers exhibiting significant allele frequency differences in pair-wise population comparisons. The estimated lambda was used to assess the real diminishing impact to association statistics when two distinct populations are merged directly in an analysis. When the PC analysis was confined to the 1,019 Estonian individuals (0.1% of the Estonian population), a fine structure emerged that correlated with the geography of individual counties. With at least two cohorts available from several countries, genetic substructures were investigated in Czech, Finnish, German, Estonian and Italian populations. Together with previously published data, our results allow the creation of a comprehensive European genetic map that will greatly facilitate inter-population genetic studies including genome wide association studies (GWAS).


Subject(s)
Polymorphism, Single Nucleotide/genetics , White People/genetics , Europe/ethnology , Gene Frequency , Genetic Markers , Genome, Human/genetics , Humans , Linkage Disequilibrium/genetics , Principal Component Analysis
16.
Genome Med ; 1(5): 51, 2009 May 12.
Article in English | MEDLINE | ID: mdl-19463184

ABSTRACT

A 100 kb region on 9p21.3 harbors two major disease susceptibility loci: one for type 2 diabetes (T2D) and one for coronary heart disease (CHD). The single nucleotide polymorphisms (SNPs) associated with these two diseases in Europeans reside on two adjacent haplotype blocks with independent effects on disease. To help delimit the regions that likely harbor the disease-causing variants in populations of non-European origin, we studied the haplotype diversity and allelic history of the 9p21.3 region using 938 unrelated individuals from 51 populations (Human Genome Diversity Panel). We used SNP data from Illumina's 650Y SNP arrays supplemented with five additional SNPs within the region of interest. Haplotype frequencies were analyzed with the EM algorithm implemented in PLINK. For the T2D locus, the TT risk haplotype of SNPs rs10811661 and rs10757283 was present at similar frequencies in all global populations, while a shared 6-SNP haplotype that carries the protective C allele of rs10811661 was found at a frequency of 2.9% in Africans and 41.3% in East Asians and was associated with low haplotype diversity. For the CHD locus, all populations shared a core risk haplotype spanning >17.5 kb, which shows dramatic increase in frequency between African (11.5%) and Middle Eastern (63.7%) populations. Interestingly, two SNPs (rs2891168 and rs10757278) tagging this CHD risk haplotype are most strongly associated with CHD disease status according to independent clinical fine-mapping studies. The large variation in linkage disequilibrium patterns identified between the populations demonstrates the importance of allelic background data when selecting SNPs for replication in global populations. Intriguingly, the protective allele for T2D and the risk allele for CHD show an increase in frequency in non-Africans compared to Africans, implying different population histories for these two adjacent disease loci.

17.
Hum Mol Genet ; 18(9): 1670-83, 2009 May 01.
Article in English | MEDLINE | ID: mdl-19221116

ABSTRACT

Large case-control genome-wide association studies primarily expose common variants contributing to disease pathogenesis with modest effects. Thus, alternative strategies are needed to tackle rare, possibly more penetrant alleles. One strategy is to use special populations with a founder effect and isolation, resulting in allelic enrichment. For multiple sclerosis such a unique setting is reported in Southern Ostrobothnia in Finland, where the prevalence and familial occurrence of multiple sclerosis (MS) are exceptionally high. Here, we have studied one of the best replicated MS loci, 5p, and monitored for haplotypes shared among 72 regional MS cases, the majority of which are genealogically distantly related. The haplotype analysis over the 45 Mb region, covering the linkage peak identified in Finnish MS families, revealed only modest association at IL7R (P = 0.04), recently implicated in MS, whereas most significant association was found with one haplotype covering the C7-FLJ40243 locus (P = 0.0001), 5.1 Mb centromeric of IL7R. The finding was validated in an independent sample from the isolate and resulted in an odds ratio of 2.73 (P = 0.000003) in the combined data set. The identified relatively rare risk haplotype contains C7 (complement component 7), an important player of the innate immune system. Suggestive association with alleles of the region was seen also in more heterogeneous populations. Interestingly, also the complement activity correlated with the identified risk haplotype. These results suggest that the MS predisposing locus on 5p is more complex than assumed and exemplify power of population isolates in the identification of rare disease alleles.


Subject(s)
Chromosomes, Human, Pair 5/genetics , Complement C7/genetics , Multiple Sclerosis/genetics , Case-Control Studies , Finland , Genome-Wide Association Study , Haplotypes , Humans
18.
Nat Genet ; 41(1): 35-46, 2009 Jan.
Article in English | MEDLINE | ID: mdl-19060910

ABSTRACT

Genome-wide association studies (GWAS) of longitudinal birth cohorts enable joint investigation of environmental and genetic influences on complex traits. We report GWAS results for nine quantitative metabolic traits (triglycerides, high-density lipoprotein, low-density lipoprotein, glucose, insulin, C-reactive protein, body mass index, and systolic and diastolic blood pressure) in the Northern Finland Birth Cohort 1966 (NFBC1966), drawn from the most genetically isolated Finnish regions. We replicate most previously reported associations for these traits and identify nine new associations, several of which highlight genes with metabolic functions: high-density lipoprotein with NR1H3 (LXRA), low-density lipoprotein with AR and FADS1-FADS2, glucose with MTNR1B, and insulin with PANK1. Two of these new associations emerged after adjustment of results for body mass index. Gene-environment interaction analyses suggested additional associations, which will require validation in larger samples. The currently identified loci, together with quantified environmental exposures, explain little of the trait variation in NFBC1966. The association observed between low-density lipoprotein and an infrequent variant in AR suggests the potential of such a cohort for identifying associations with both common, low-impact and rarer, high-impact quantitative trait loci.


Subject(s)
Founder Effect , Genome-Wide Association Study , Metabolic Networks and Pathways/genetics , Parturition/genetics , Population Groups/genetics , Quantitative Trait, Heritable , Adult , Blood Pressure , Body Mass Index , Cohort Studies , Delta-5 Fatty Acid Desaturase , Finland , Genotype , Geography , Humans , Linguistics , Phenotype , Polymorphism, Single Nucleotide/genetics , Population Dynamics , Quantitative Trait Loci/genetics , Reproducibility of Results
19.
Am J Hum Genet ; 83(6): 787-94, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19061986

ABSTRACT

Although high-density SNP genotyping platforms generate a momentum for detailed genome-wide association (GWA) studies, an offshoot is a new insight into population genetics. Here, we present an example in one of the best-known founder populations by scrutinizing ten distinct Finnish early- and late-settlement subpopulations. By determining genetic distances, homozygosity, and patterns of linkage disequilibrium, we demonstrate that population substructure, and even individual ancestry, is detectable at a very high resolution and supports the concept of multiple historical bottlenecks resulting from consecutive founder effects. Given that genetic studies are currently aiming at identifying smaller and smaller genetic effects, recognizing and controlling for population substructure even at this fine level becomes imperative to avoid confounding and spurious associations. This study provides an example of the power of GWA data sets to demonstrate stratification caused by population history even within a seemingly homogeneous population, like the Finns. Further, the results provide interesting lessons concerning the impact of population history on the genome landscape of humans, as well as approaches to identify rare variants enriched in these subpopulations.


Subject(s)
Founder Effect , Genetic Variation , Genome, Human , Linkage Disequilibrium , Population , Alleles , Chromosomes, Human, Pair 22 , Gene Frequency , Genome-Wide Association Study/methods , Homozygote , Humans , Polymorphism, Single Nucleotide
20.
Am J Hum Genet ; 82(6): 1361-7, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18513680

ABSTRACT

Meckel syndrome (MKS) is a lethal malformation disorder characterized classically by encephalocele, polycystic kidneys, and polydactyly. MKS is also one of the major contributors to syndromic neural tube defects (NTDs). Recent findings have shown primary cilia dysfunction in the molecular background of MKS, indicating that cilia are critical for early human development. However, even though four genes behind MKS have been identified to date, they elucidate only a minor proportion of the MKS cases. In this study, instead of traditional linkage analysis, we selected 10 nonrelated affected fetuses and looked for the homozygous regions shared by them. Based on this strategy, we identified the sixth locus and the fifth gene, CC2D2A (MKS6), behind MKS. The biological function of CC2D2A is uncharacterized, but the corresponding polypeptide is predicted to be involved in ciliary functions and it has a calcium binding domain (C2). Immunofluorescence staining of patient's fibroblast cells demonstrates that the cells lack cilia, providing evidence for the critical role of CC2D2A in cilia formation. Our finding is very significant not only to understand the molecular background of MKS, but also to obtain additional information about the function of the cilia, which can help to understand their significance in normal development and also in other ciliopathies, which are an increasing group of disorders with overlapping phenotypes.


Subject(s)
Abnormalities, Multiple/genetics , Ciliary Motility Disorders/genetics , Mutation , Proteins/genetics , Base Sequence , Cilia/physiology , Ciliary Motility Disorders/physiopathology , Cytoskeletal Proteins , DNA, Complementary/genetics , Encephalocele/genetics , Female , Humans , Neural Tube Defects/genetics , Polycystic Kidney Diseases/genetics , Polydactyly/genetics , Pregnancy , Syndrome
SELECTION OF CITATIONS
SEARCH DETAIL
...