Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Plant Physiol ; 248: 153143, 2020 May.
Article in English | MEDLINE | ID: mdl-32126452

ABSTRACT

Abscisic acid (ABA) triggers and regulates, while ethylene modulates autumn leaf senescence. The expression profiles of genes encoding ABA route components and the ACC oxidase isozymes were investigated in Populus tremula during the early and moderate stages of autumn leaf senescence. The targets of interest were Ptre-HAB1-like genes (Ptre-HAB1, Ptre-HAB3a and Ptre-HAB3b), the subclass 3 of Ptre-SnRK2s genes (Ptre-SnRK2.6a, Ptre-SnRK2.6b and Ptre-SnRK2.6b) and Ptre-RbohD1, Ptre-RbohF1, and Ptre-RbohF2 genes encoding the poplar components, which are counterparts of the ABA route key regulators or the counterparts of its secondary messengers, such as Homology to ABA-insensitive 1 (HAB1), Sucrose non-fermenting 1-related protein kinases 2 (SnRK2s) or Respiratory burst oxidase D and Respiratory burst oxidase F (RbohD and RbohF, respectively) in Arabidopsis, and Ptre-ACO3, Ptre-ACO5, and Ptre-ACO6 genes encoding ACC oxidase isozymes involved in ethylene biosynthesis. The fold change in their expression levels enabled to distinguish the distinct expression patterns for the following pairs of genes: Ptre-HAB3a and Ptre-SnRK2.6a, Ptre-HAB3b and Ptre-SnRK2.2, and Ptre-HAB1 and Ptre-SnRK2.6b, where each pair involves the genes encoding the negative and positive regulators of ABA route, respectively. Among the investigated genes, the fold change of expression was the highest for Ptre-ACO3, Ptre-ACO6, and Ptre-SnRK2.6b genes during both the studied stages, and additionally for Ptre-HAB1 and Ptre-RbohD1 genes during the moderate stage. In contrast, the Ptre-RbohF1 and Ptre-RbohF2 genes exhibited only the transient upregulation at the early stage of senescence. In an in vitro study, the ability of protein kinases Ptre-SnRK2.6a and Ptre-SnRK2.6b to phosphorylate the N-terminal regions of Ptre-RbohD1 and Ptre-RbohF2 was studied; the activity of Ptre-SnRK2.6b against the studied Ptre-Rbohs was noticeably lower than that exhibited by Ptre-SnRK2.6a. It seems that despite the high similarity of their polypeptides, Ptre-SnRK2.6a and Ptre-SnRK2.6b may play different biological roles; nonetheless, it requires in vivo confirmation. Surprisingly, the highest protein kinase activity against the Ptre-Rbohs was detected in the heterologous reaction with AT-SnRK2.6/OST1 which suggests that the discussed interactions are evolutionary conserved.


Subject(s)
Amino Acid Oxidoreductases/genetics , Populus/genetics , Signal Transduction/genetics , Transcriptome , Abscisic Acid , Amino Acid Oxidoreductases/metabolism , Gene Expression Profiling , Genes, Plant , Isoenzymes/genetics , Isoenzymes/metabolism , Plant Leaves/genetics , Plant Leaves/metabolism , Populus/metabolism
2.
Plant Physiol Biochem ; 139: 660-671, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31048123

ABSTRACT

In Arabidopsis, the serine/threonine protein kinase Constitutive Triple Response 1 (CTR1) and Ethylene Insensitive 2 polypeptide (EIN2) functions are key negative and positive components, respectively, in the ethylene signalling route. Here, we report on an in silico study of members of the CTR1-like and EIN2-like polypeptide families from poplars. The expression of CTR1-like and EIN2-like genes such as Ptre-CTR1, Ptre-CTR3 and Ptre-EIN2a was studied in Populus tremula buds and leaves in response to dehydration, various light conditions and under senescence. In buds under dehydration, the maximal fold-change of the Ptre-CTR1, Ptre-CTR3 and Ptre-EIN2a expression level recorded almost identical values. This suggests that maintenance of a constant ratio between the transcript levels of genes encoding positive and negative ethylene signalling components is required under stress. The expression of the studied genes was 1.4-to 3-fold higher in response to darkness, but 4.5- to 51.2-fold and 21.6- to 51.2-fold higher under the early and moderate leaf senescence, respectively. It is worth noting that the senescence-related Ptre-EIN2a and Ptre-CTR3a expression profiles were very similar. Using in vitro assays, we demonstrated the ability of the catalytic domain of Ptre-CTR1 to phosphorylate the Ptre-EIN2a-like polypeptide, which is similar to that in Arabidopsis. The target substrate, the Ptre-CEND2a polypeptide (C-terminal part of Ptre-EIN2a), was only phosphorylated by the protein kinase Ptre-CTR1 and not by Ptre-CTR3. Moreover, the addition of Ptre-CTR3 polypeptides (-CTR3a or -CTR3b forms) to the reaction mixture had an inhibitory effect on Ptre-CTR1 auto- and trans-phosphorylation. In contrast to Ptre-CTR1, Ptre-CTR3 may act as a positive regulator in ethylene signalling in poplar; however, this hypothesis requires in vivo confirmation. Thus, the ethylene signalling route in poplar seems to be under the control of certain additional mechanisms which have not been reported in Arabidopsis.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Populus/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Ethylenes/metabolism , Phosphorylation , Plant Leaves/metabolism , Populus/genetics , Protein Kinases/genetics , Protein Kinases/metabolism , Receptors, Cell Surface/genetics , Receptors, Cell Surface/metabolism
3.
J Plant Physiol ; 223: 84-95, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29554558

ABSTRACT

In this report, the members of PP2C, SnRK2a and Rboh oxidase families from Arabidopsis and poplar were studied in silico, and the expression profiles of the some of them were specified in Populus tremula buds and adult leaves. In poplars, the counterparts of ABI1- and ABI2-like protein phosphatases are lacking, but poplar genomes encode three HAB-like proteins denoted in this work as HAB1, HAB3a and HAB3b, and the counterparts of the two latter ones are absent in Arabidopsis. Nonetheless, they may be present in other species. In poplars, SnRK2 subclass III includes two SnRK2.6-like protein kinases denoted by us as SnRK2.6a and SnRK2.6b, and only one SnRK2.2 corresponding to SnRK2.2 and SnRK2.3 ones from Arabidopsis. In contrast to Arabidopsis, the poplar Rboh family involves two RbohD- and RbohF-like proteins denoted here as RbohD1 and RbohD2, and RbohF1 and RbohF2, respectively. The expressions of genes encoding the above components of the ABA route were studied in Populus tremula dehydrated buds and adult leaves not subjected to stress but exposed to natural daylight or to darkness, and to inhibition of ethylene biosynthesis or signaling route by cobalt or silver ions, respectively. In leaves, the light conditions seemed to be the most pronounced factor, from among the studied stimuli, controlling the expression Ptre-HAB3a, Ptre-HAB1, Ptre-SnRK2.6a and Ptre-RbohF2 genes, their expression was upregulated in darkness. This observation implies that these genes may be important for dark-induced stomatal closure regulation. Ethylene negatively affected the expression of three studied Rboh genes and Ptre-HAB1one but only at daylight, whereas its positive effect on the of Ptre-HAB3a was shown in the dark exposed leaves. In buds, three studied Rboh genes took part in the early response to dehydration, however their participation involved the visibly highest level of the Ptre-RbohD1 transcripts, followed by Ptre-RbohF2 and the lowest one of Ptre-RbohF1. Nonetheless, the further stress-induced superoxide anion generation seemed to depend on the enhanced expression of the Ptre-RbohD1 and Ptre-RbohF2 genes only, still with a significantly higher level of the Ptre-RbohD1 one. Ptre-RbohD2 transcripts were found neither in leaves nor in buds. The expression of the other genes discussed in the present work was either slightly upregulated at moderate stress or did not significantly change in response to dehydration. The protein kinase activity of overexpressed Ptre-SnRK2.6a and Ptre-SnRK2.6b was confirmed in in vitro protein kinase assay and compared to that of SnRK2.6/OST1 one from Arabidopsis.


Subject(s)
Abscisic Acid/genetics , Plant Proteins/genetics , Populus/physiology , Signal Transduction/genetics , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Computer Simulation , Desiccation , Gene Expression Profiling , Light , Multigene Family/genetics , Oxidoreductases/genetics , Oxidoreductases/metabolism , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Proteins/metabolism , Populus/genetics , Populus/growth & development , Species Specificity
4.
J Exp Bot ; 61(12): 3475-91, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20581125

ABSTRACT

In higher plants, copper ions, hydrogen peroxide, and cycloheximide have been recognized as very effective inducers of the transcriptional activity of genes encoding the enzymes of the ethylene biosynthesis pathway. In this report, the transcriptional patterns of genes encoding the 1-aminocyclopropane-1-carboxylate synthases (ACSs), 1-aminocyclopropane-1-carboxylate oxidases (ACOs), ETR1, ETR2, and ERS1 ethylene receptors, phospholipase D (PLD)-alpha1, -alpha2, -gamma1, and -delta, and respiratory burst oxidase homologue (Rboh)-NADPH oxidase-D and -F in response to these inducers in Brassica oleracea etiolated seedlings are shown. ACS1, ACO1, ETR2, PLD-gamma1, and RbohD represent genes whose expression was considerably affected by all of the inducers used. The investigations were performed on the seedlings with (i) ethylene insensitivity and (ii) a reduced level of the PLD-derived phosphatidic acid (PA). The general conclusion is that the expression of ACS1, -3, -4, -5, -7, and -11, ACO1, ETR1, ERS1, and ETR2, PLD-gamma 1, and RbohD and F genes is undoubtedly under the reciprocal cross-talk of the ethylene and PA(PLD) signalling routes; both signals affect it in concerted or opposite ways depending on the gene or the type of stimuli. The results of these studies on broccoli seedlings are in agreement with the hypothesis that PA may directly affect the ethylene signal transduction pathway via an inhibitory effect on CTR1 (constitutive triple response 1) activity.


Subject(s)
Brassica/metabolism , Ethylenes/biosynthesis , NADPH Oxidases/metabolism , Phospholipase D/metabolism , Plant Proteins/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Brassica/genetics , Copper/pharmacology , Cycloheximide/pharmacology , Gene Expression Regulation, Plant , Genes, Plant , Hydrogen Peroxide/pharmacology , Lyases/genetics , Lyases/metabolism , NADPH Oxidases/genetics , Phospholipase D/genetics , Plant Proteins/genetics , RNA, Plant/genetics , Receptors, Cell Surface/genetics , Seedlings/genetics , Seedlings/metabolism , Signal Transduction
5.
J Pediatr Endocrinol Metab ; 16(6): 819-25, 2003.
Article in English | MEDLINE | ID: mdl-12948293

ABSTRACT

Analysis of GHR and IGF-I coding sequences in 47 children with normal serum levels of GH, low IGF-I and growth disorders generally did not show mutation in the genes studied. Only one boy had a mutation located in the fifth exon of the GHR gene (C-->T in codon 88). This suggests that the growth disorders in this group of children might be due to a defect in a DNA region regulating expression of the GHR and IGF1 genes or genes involved in their regulation.


Subject(s)
Growth Disorders/genetics , Insulin-Like Growth Factor I/genetics , Receptors, Somatotropin/genetics , Adolescent , Body Height/genetics , Child , Cloning, Molecular , Codon , DNA/genetics , DNA/isolation & purification , Exons , Female , Human Growth Hormone/blood , Humans , Insulin-Like Growth Factor I/metabolism , Male , Phenotype , Polymorphism, Single-Stranded Conformational , Reverse Transcriptase Polymerase Chain Reaction
6.
Acta Biochim Pol ; 49(3): 757-74, 2002.
Article in English | MEDLINE | ID: mdl-12422245

ABSTRACT

Both ethylene and the enzymes of ethylene synthesis are subjects of intensive scientific investigation. The present review discusses structure, catalytic activity and evolutionary relationships of 1-aminocyclopropane-1-carboxylate synthase, identified for the first time in ripening tomato in 1979. This enzyme is responsible for the conversion of S-adenosyl-L-methionine to 1-aminocyclopropane-1-carboxylic acid, which is the key step of ethylene synthesis in higher plants. The role of this enzyme (especially in the fruit ripening) was demonstrated in 1991 in transgenic tomato plants, expressing 1-aminocyclopropane-1-carboxylate synthase antisense RNA. On the basis of mutagenesis and crystallization of the enzyme, new data were provided on the three-dimensional structure and amino-acid residues which are critical for catalysis. The control of ethylene production is of great interest for plant biotechnology because it can delay senescence and overmaturation. These processes are responsible for large loss of vegetables and fruit on storage. Detailed structural and biochemical data are necessary to help design 1-aminocyclopropane-1-carboxylate synthase inhibitors, whose application is expected to have immense agricultural effects.


Subject(s)
Ethylenes/biosynthesis , Lyases/genetics , Lyases/metabolism , Plants/enzymology , Amino Acid Sequence , Catalysis , Databases, Protein , Enzyme Inhibitors/metabolism , Enzyme Inhibitors/pharmacology , Evolution, Molecular , Isoenzymes/chemistry , Isoenzymes/genetics , Lyases/antagonists & inhibitors , Lyases/chemistry , Plants/genetics , Protein Structure, Secondary , Protein Structure, Tertiary , S-Adenosylmethionine/metabolism , S-Adenosylmethionine/pharmacology , Structure-Activity Relationship , Substrate Specificity
7.
Acta Biochim Pol ; 49(4): 1037-42, 2002.
Article in English | MEDLINE | ID: mdl-12545211

ABSTRACT

An important trait of tomato is the rate of fruit ripening, strongly dependent on ethylene production. The ripening-related ethylene synthesis in tomato is controlled mainly by 1-aminocyclopropane-1-carboxylate synthase LE-ACS2 and LE-ACS4 isoenzymes (Rottmann et al., 1991, J. Mol. Biol. 222: 937; Lincoln et al., 1993, J. Biol. Chem. 268: 19422; Barry et al., 2000, Plant Physiol. 123: 979). In spite of numerous reports on the LE-ACS2 and LE-ACS4 gene expression, only ones considered the genomic organisation each of these genes (Rottmann et al., 1991; Lincoln et al., 1993) reported one copy of each of these genes in tomato cv VF36. In this article we suggest that the genomic organisation of LE-ACS2 and LE-ACSS4 genes may depend on tomato cultivars and may differ from that described by the above authors. The results of Southern analyses of genomic DNAs from 17-day old seedlings (cultivars Jaga, Halicz, Betalux, New Yorker) imply that the genomic organisation of LE-ACS2 and LE-ACS4 genes in Polish cultivars differs from that reported for cv VF36.


Subject(s)
Genes, Plant/genetics , Lyases/genetics , Polymorphism, Restriction Fragment Length , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , Blotting, Southern , DNA, Complementary/genetics , Exons/genetics , Solanum lycopersicum/classification , Seedlings
SELECTION OF CITATIONS
SEARCH DETAIL