Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Enzyme Inhib Med Chem ; 36(1): 1357-1369, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34225560

ABSTRACT

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine playing crucial role in immunity. MIF exerts a unique tautomerase enzymatic activity that has relevance concerning its multiple functions and its small molecule inhibitors have been proven to block its pro-inflammatory effects. Here we demonstrate that some of the E-2-arylmethylene-1-tetralones and their heteroanalogues efficiently bind to MIF's active site and inhibit MIF tautomeric (enolase, ketolase activity) functions. A small set of the synthesised derivatives, namely compounds (4), (23), (24), (26) and (32), reduced inflammatory macrophage activation. Two of the selected compounds (24) and (26), however, markedly inhibited ROS and nitrite production, NF-κB activation, TNF-α, IL-6 and CCL-2 cytokine expression. Pre-treatment of mice with compound (24) exaggerated the hypothermic response to high dose of bacterial endotoxin. Our experiments suggest that tetralones and their derivatives inhibit MIF's tautomeric functions and regulate macrophage activation and thermal changes in severe forms of systemic inflammation.


Subject(s)
Hypothermia, Induced , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Tetralones/pharmacology , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Lipopolysaccharides , Macrophage Activation/drug effects , Macrophage Migration-Inhibitory Factors/metabolism , Male , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , RAW 264.7 Cells , Structure-Activity Relationship , Tetralones/chemistry
2.
FEBS Open Bio ; 11(3): 684-704, 2021 03.
Article in English | MEDLINE | ID: mdl-33471430

ABSTRACT

Microorganisms or LPS (lipopolysaccharide), an outer membrane component of Gram-negative bacteria, can induce a systemic inflammatory response that leads to sepsis, multiple organ dysfunction, and mortality. Here, we investigated the role of cyclophilin D (CypD)-dependent mitochondrial permeability transition (mPT) in the immunosuppressive phase of LPS-induced endotoxic shock. The liver plays an important role in immunity and organ dysfunction; therefore, we used liver RNA sequencing (RNA-seq) data, Ingenuity® Pathway Analysis (IPA ® ) to investigate the complex role of mPT formation in inflammatory reprogramming and disease progression. LPS induced significant changes in the expression of 2844 genes, affecting 179 pathways related to mitochondrial dysfunction, defective oxidative phosphorylation, nitric oxide (NO) and reactive oxygen species (ROS) accumulation, nuclear factor, erythroid 2 like 2 (Nrf2), Toll-like receptors (TLRs), and tumor necrosis factor α receptor (TNFR)-mediated processes in wild-type mice. The disruption of CypD reduced LPS-induced alterations in gene expression and pathways involving TNFRs and TLRs, in addition to improving survival and attenuating oxidative liver damage and the related NO- and ROS-producing pathways. CypD deficiency diminished the suppressive effect of LPS on mitochondrial function, nuclear- and mitochondrial-encoded genes, and mitochondrial DNA (mtDNA) quantity, which could be critical in improving survival. Our data propose that CypD-dependent mPT is an amplifier in inflammatory reprogramming and promotes disease progression. The mortality in human sepsis and shock is associated with mitochondrial dysfunction. Prevention of mPT by CypD disruption reduces inflammatory reprogramming, mitochondrial dysfunction, and lethality; therefore, CypD can be a novel drug target in endotoxic shock and related inflammatory diseases.


Subject(s)
Endotoxemia/genetics , Gene Expression Profiling/methods , Gene Regulatory Networks , Lipopolysaccharides/adverse effects , Mitochondria/metabolism , Peptidyl-Prolyl Isomerase F/genetics , Animals , Disease Models, Animal , Endotoxemia/chemically induced , Gene Expression Regulation/drug effects , Gene Regulatory Networks/drug effects , Male , Mice , Mitochondrial Transmembrane Permeability-Driven Necrosis/drug effects , Oxidative Stress , Sequence Analysis, RNA , Exome Sequencing
3.
Biochem Cell Biol ; 93(3): 241-50, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25728038

ABSTRACT

According to recent results, various mitochondrial processes can actively regulate the immune response. In the present report, we studied whether mitochondrial permeability transition (mPT) has such a role. To this end, we compared bacterial lipopolysaccharide (LPS)-induced inflammatory response in cyclophilin D (CypD) knock-out and wild-type mouse resident peritoneal macrophages. CypD is a regulator of mPT; therefore, mPT is damaged in CypD(-/-) cells. We chose this genetic modification-based model because the mPT inhibitor cyclosporine A regulates inflammatory processes by several pathways unrelated to the mitochondria. The LPS increased mitochondrial depolarisation, cellular and mitochondrial reactive oxygen species production, nuclear factor-κB activation, and nitrite- and tumour necrosis factor α accumulation in wild-type cells, but these changes were diminished or absent in the CypD-deficient macrophages. Additionally, LPS enhanced Akt phosphorylation/activation as well as FOXO1 and FOXO3a phosphorylation/inactivation both in wild-type and CypD(-/-) cells. However, Akt and FOXO phosphorylation was significantly more pronounced in CypD-deficient compared to wild-type macrophages. These results provide the first pieces of experimental evidence for the functional regulatory role of mPT in the LPS-induced early inflammatory response of macrophages.


Subject(s)
Cyclophilins/metabolism , Inflammation/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/drug effects , Animals , Cells, Cultured , Peptidyl-Prolyl Isomerase F , Cyclophilins/genetics , Forkhead Box Protein O1 , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Macrophages, Peritoneal/physiology , Membrane Potential, Mitochondrial/drug effects , Mice, Inbred C57BL , Mice, Knockout , Mitochondrial Membrane Transport Proteins/drug effects , Mitochondrial Permeability Transition Pore , NF-kappa B/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-akt/metabolism , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...