Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 262: 113138, 2020 Nov 15.
Article in English | MEDLINE | ID: mdl-32726681

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Porcupine bezoar (PB) is used as folk medicine for various medical conditions including cancer treatment in Malaysia. However, its toxicity profile has never been thoroughly ascertained to confirm its safe nature as an efficacious traditional medicine in the treatment of cancer as well as other ailments. AIM OF THE STUDY: This study was aimed to reveal three different PBs' aqueous extracts(viz. PB-A, PB-B, PB-C) chemical constituent's profile using GC-MS analysis, anticancer property on A375, HeLa and MCF7 cancer cells, toxicity profile on zebrafish embryo morphology, EC50, LC50 and teratogenicity index. MATERIALS AND METHODS: PBs' extracts characterization was performed through GC-MS analysis, in vitro anticancer effect was carried out on A375, HeLa and MCF7 cancer cell lines and finally and toxicity properties on three different PBs aqueous extracts (viz. PB-A, PB-B, PB-C) were determined using zebrafish embryo model. RESULTS: The GC-MS analysis revealed 10 similar compounds in all PBs' extracts. Dilauryl thiodipropionate was found to be a major compound in all PBs' extracts followed by tetradecanoic acid. An in vitro anticancer study revealed PB extracts exerted median inhibition concentration (IC50) <50 µg/mL, on cancer cells viz. A375, HeLa and MCF7 with no significant toxicity on normal cells viz. NHDF cells. In vivo toxicity of PBs extracts found affecting tail detachment, hatching, craniofacial, brain morphology, soft tissues, edema, spinal, somites, notochord and cardiovascular system (brachycardia, disruption of blood circulation) deformities. The LC50 and EC50 demonstrated PB extracts effect as dose and time dependent with median concentration <150.0 µg/mL. Additionally, teratogenicity index (TI) viz. >1.0 revealed teratogenic property for PB extracts. CONCLUSIONS: The findings revealed that all three PBs aqueous extracts possessed anticancer activity and exhibited significant toxicological effects on zebrafish embryos with high teratogenicity index. Hence, its use as an anticancer agent requires further investigation and medical attentions to determine its safe dose.


Subject(s)
Antineoplastic Agents/toxicity , Bezoars , Biological Factors/toxicity , Embryonic Development/drug effects , Gas Chromatography-Mass Spectrometry/methods , Porcupines , Animals , Antineoplastic Agents/analysis , Antineoplastic Agents/isolation & purification , Biological Factors/analysis , Biological Factors/isolation & purification , Brachyura , Cell Line, Tumor , Dose-Response Relationship, Drug , Embryonic Development/physiology , Female , HeLa Cells , Humans , MCF-7 Cells , Male , Zebrafish
2.
Antioxidants (Basel) ; 8(2)2019 Feb 12.
Article in English | MEDLINE | ID: mdl-30759849

ABSTRACT

Porcupine bezoars (PBs) are masses of undigested calcareous concretions formed within the gastrointestinal tract. There are undocumented claims that PBs have antioxidant activity and can treat cancers. However, limited scientific study has been carried out to verify these traditional claims. Hence, this study was conducted to characterize the chemical profile and validate the antioxidant and anticancer activity against melanoma cells (A375). PB extract was initially subjected to Fourier-transform infrared spectroscopy (FTIR), gas chromatography⁻mass spectrometry (GCMS), total phenolic content (TPC), and total flavonoid content (TFC) analyses. The bioautography of antioxidant assays, namely 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), 2,2-diphenyl-1-picrylhydrazy (DPPH), and ß-carotene was performed. An in vitro A375 cell viability assay, apoptosis assay, cell cycle arrest assay, and gene expression assay were carried out as well. The experimental finding revealed 5,10-diethoxy-2,3,7,8-tetrahydro-1H,6H-dipyrrolo[1,2-a:1',2'-d]pyrazine, ursodeoxycholic acid, and cholest-5-en-3-ol (3 beta)-, carbonochloridate are major compounds detected in PB extract. PB extract has low phenolic content, viz. 698.7 ± 0.93 (µg GAE/5 mg dry weight). The bioautography antioxidant assays revealed a potent antioxidant effect (ABTS > DPPH > ß-carotene), with free radical scavenging activity. Furthermore, PB extract exhibited dose- and time-dependent inhibition of cancer activity on A375 cells due to the exhibition of apoptosis via an intrinsic pathway.

3.
Nutr Cancer ; 71(5): 792-805, 2019.
Article in English | MEDLINE | ID: mdl-30614285

ABSTRACT

Nine phenolic compounds were identified and quantified in Artocarpus altilia fruit. One of the main compounds was quercetin, which is the major class of flavonoids has been identified and quantified in pulp part of A. altilis fruit of methanol extract. The aim of this study was to evaluate in vitro cytotoxic assay. Inhibitory concentration 50% concentration was determined using trypan blue exclusion assay. Apoptosis induction and cell cycle regulation were studied by flow cytometric analysis. The expression of apoptosis and cell cycle-related regulatory genes were assessed by RT-qPCR study of the methanol extract of pulp part on human lung carcinoma (A549) cell line. A significant increase of cells at G2/M phases was detected (P < 0.05). Furthermore, the pulp of the fruit downregulated the expression of anti-apoptosis gene BCL-2 and upregulated the expression of pro-apoptosis gene BAX. CASPASE-3 was also activated by the fruit, which started a CASPASE-3-depended mitochondrial pathway to induce apoptosis. As the results, the pulp was the most active in terms of all tests, due to high amount of quercetin in pulp part, 78% of total flavonoids. Taken together, these findings suggested that A. altilis induces apoptosis in a mitochondrial-dependent pathway by releasing and upregulating CYTOCHROME C expression and regulates the expression of downstream apoptotic components, including BCL-2 and BAX.


Subject(s)
Apoptosis/drug effects , Artocarpus , Cell Cycle/drug effects , Lung Neoplasms/drug therapy , Plant Extracts/pharmacology , Quercetin/pharmacology , Antioxidants/pharmacology , Cell Line, Tumor , Humans , In Vitro Techniques
SELECTION OF CITATIONS
SEARCH DETAIL