Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(9): 10539-10555, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463280

ABSTRACT

Covarine, copper phthalocyanine, a novel tooth whitening ingredient, has been incorporated into various toothpaste formulations using diverse technologies such as larger flakes, two-phase pastes, and microbeads. In this study, we investigated the behavior of covarine microbeads (200 µm) in Colgate advanced white toothpaste when mixed with artificial and real saliva. Our analysis utilized a custom-designed microfluidic mixer with 400 µm wide channels arranged in serpentine patterns, featuring a Y-shaped design for saliva and toothpaste flow. The mixer, fabricated using stereolithography 3D printing technology, incorporated a flexible transparent resin (Formlabs' Flexible 80A resin) and PMMA layers. COMSOL simulations were performed by utilizing parameters extracted from toothpaste and saliva datasheets, supplemented by laboratory measurements, to enhance simulation accuracy. Experimental assessments encompassing the behavior of covarine particles were conducted using an optical profilometer. Viscosity tests and electrical impedance spectroscopy employing recently developed all-carbon electrodes were employed to analyze different toothpaste dilutions. The integration of experimental data from microfluidic chips with computational simulations offers thorough insights into the interactions of covarine particles with saliva and the formation of microfilms on enamel surfaces.

2.
PLoS One ; 18(2): e0280381, 2023.
Article in English | MEDLINE | ID: mdl-36795661

ABSTRACT

Diagnosing oral diseases at an early stage may lead to better preventive treatments, thus reducing treatment burden and costs. This paper introduces a systematic design of a microfluidic compact disc (CD) consisting of six unique chambers that run simultaneously from sample loading, holding, mixing and analysis. In this study, the electrochemical property changes between real saliva and artificial saliva mixed with three different types of mouthwashes (i.e. chlorhexidine-, fluoride- and essential oil (Listerine)-based mouthwashes) were investigated using electrical impedance analysis. Given the diversity and complexity of patient's salivary samples, we investigated the electrochemical impedance property of healthy real saliva mixed with different types of mouthwashes to understand the different electrochemical property which could be a foundation for diagnosis and monitoring of oral diseases. On the other hand, electrochemical impedance property of artificial saliva, a commonly used moisturizing agent and lubricant for the treatment of xerostomia or dry mouth syndrome was also studied. The findings indicate that artificial saliva and fluoride-based mouthwash showed higher conductance values compared to real saliva and two other different types of mouthwashes. The ability of our new microfluidic CD platform to perform multiplex processes and detection of electrochemical property of different types of saliva and mouthwashes is a fundamental concept for future research on salivary theranostics using point-of-care microfluidic CD platform.


Subject(s)
Mouthwashes , Xerostomia , Humans , Saliva, Artificial/chemistry , Electric Impedance , Fluorides/analysis , Microfluidics , Chlorhexidine , Saliva/chemistry , Xerostomia/therapy
3.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36432311

ABSTRACT

bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.

SELECTION OF CITATIONS
SEARCH DETAIL
...