Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 13097, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38849493

ABSTRACT

Customer churn remains a critical concern for businesses, highlighting the significance of retaining existing customers over acquiring new ones. Effective prediction of potential churners aids in devising robust retention policies and efficient customer management strategies. This study dives into the realm of machine learning algorithms for predictive analysis in churn prediction, addressing the inherent challenge posed by diverse and imbalanced customer churn data distributions. This paper introduces a novel approach-the Ratio-based data balancing technique, which addresses data skewness as a pre-processing step, ensuring improved accuracy in predictive modelling. This study fills gaps in existing literature by highlighting the effectiveness of ensemble algorithms and the critical role of data balancing techniques in optimizing churn prediction models. While our research contributes a novel approach, there remain avenues for further exploration. This work evaluates several machine learning algorithms-Perceptron, Multi-Layer Perceptron, Naive Bayes, Logistic Regression, K-Nearest Neighbour, Decision Tree, alongside Ensemble techniques such as Gradient Boosting and Extreme Gradient Boosting (XGBoost)-on balanced datasets achieved through our proposed Ratio-based data balancing technique and the commonly used Data Resampling. Results reveal that our proposed Ratio-based data balancing technique notably outperforms traditional Over-Sampling and Under-Sampling methods in churn prediction accuracy. Additionally, using combined algorithms like Gradient Boosting and XGBoost showed better results than using single methods. Our study looked at different aspects like Accuracy, Precision, Recall, and F-Score, finding that these combined methods are better for predicting customer churn. Specifically, when we used a 75:25 ratio with the XGBoost method, we got the most promising results for our analysis which are presented in this work.

2.
JMIR Med Inform ; 9(2): e25245, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33400677

ABSTRACT

The COVID-19 pandemic has caused substantial global disturbance by affecting more than 42 million people (as of the end of October 2020). Since there is no medication or vaccine available, the only way to combat it is to minimize transmission. Digital contact tracing is an effective technique that can be utilized for this purpose, as it eliminates the manual contact tracing process and could help in identifying and isolating affected people. However, users are reluctant to share their location and contact details due to concerns related to the privacy and security of their personal information, which affects its implementation and extensive adoption. Blockchain technology has been applied in various domains and has been proven to be an effective approach for handling data transactions securely, which makes it an ideal choice for digital contact tracing apps. The properties of blockchain such as time stamping and immutability of data may facilitate the retrieval of accurate information on the trail of the virus in a transparent manner, while data encryption assures the integrity of the information being provided. Furthermore, the anonymity of the user's identity alleviates some of the risks related to privacy and confidentiality concerns. In this paper, we provide readers with a detailed discussion on the digital contact tracing mechanism and outline the apps developed so far to combat the COVID-19 pandemic. Moreover, we present the possible risks, issues, and challenges associated with the available contact tracing apps and analyze how the adoption of a blockchain-based decentralized network for handling the app could provide users with privacy-preserving contact tracing without compromising performance and efficiency.

3.
J Med Syst ; 42(8): 156, 2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29987560

ABSTRACT

The healthcare data is an important asset and rich source of healthcare intellect. Medical databases, if created properly, will be large, complex, heterogeneous and time varying. The main challenge nowadays is to store and process this data efficiently so that it can benefit humans. Heterogeneity in the healthcare sector in the form of medical data is also considered to be one of the biggest challenges for researchers. Sometimes, this data is referred to as large-scale data or big data. Blockchain technology and the Cloud environment have proved their usability separately. Though these two technologies can be combined to enhance the exciting applications in healthcare industry. Blockchain is a highly secure and decentralized networking platform of multiple computers called nodes. It is changing the way medical information is being stored and shared. It makes the work easier, keeps an eye on the security and accuracy of the data and also reduces the cost of maintenance. A Blockchain-based platform is proposed that can be used for storing and managing electronic medical records in a Cloud environment.


Subject(s)
Cloud Computing , Databases, Factual , Electronic Health Records , Medicare , Delivery of Health Care , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL