Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Immunother Cancer ; 9(6)2021 06.
Article in English | MEDLINE | ID: mdl-34140316

ABSTRACT

BACKGROUND: Metastasis is the major cause of death in patients with cancer. Myeloid skewing of hematopoietic cells is a prominent promoter of metastasis. However, the reservoir of these cells in the bone marrow (BM) compartment and their differentiation pattern from hematopoietic stem and progenitor cells (HSPCs) have not been explored. METHODS: We used a unique model system consisting of tumor cell clones with low metastatic potential or high metastatic potential (met-low and met-high, respectively) to investigate the fate of HSPC differentiation using murine melanoma and breast carcinoma. Single-cell RNA sequencing (scRNA-seq) analysis was performed on HSPC obtained from the BM of met-low and met-high tumors. A proteomic screen of tumor-conditioned medium integrated with the scRNA-seq data analysis was performed to analyze the potential cross talk between cancer cells and HSPCs. Adoptive transfer of tumor-educated HSPC subsets obtained from green fluorescent protein (GFP)+ tagged mice was then carried out to identify the contribution of committed HSPCs to tumor spread. Peripheral mononuclear cells obtained from patients with breast and lung cancer were analyzed for HSPC subsets. RESULTS: Mice bearing met-high tumors exhibited a significant increase in the percentage of HSPCs in the BM in comparison with tumor-free mice or mice bearing met-low tumors. ScRNA-seq analysis of these HSPCs revealed that met-high tumors enriched the monocyte-dendritic progenitors (MDPs) but not granulocyte-monocyte progenitors (GMPs). A proteomic screen of tumor- conditioned medium integrated with the scRNA-seq data analysis revealed that the interleukin 6 (IL-6)-IL-6 receptor axis is highly active in HSPC-derived MDP cells. Consequently, loss of function and gain of function of IL-6 in tumor cells resulted in decreased and increased metastasis and corresponding MDP levels, respectively. Importantly, IL-6-educated MDPs induce metastasis within mice bearing met-low tumors-through further differentiation into immunosuppressive macrophages and not dendritic cells. Consistently, MDP but not GMP levels in peripheral blood of breast and lung cancer patients are correlated with tumor aggressiveness. CONCLUSIONS: Our study reveals a new role for tumor-derived IL-6 in hijacking the HSPC differentiation program toward prometastatic MDPs that functionally differentiate into immunosuppressive monocytes to support the metastatic switch.


Subject(s)
Dendritic Cells/metabolism , Interleukin-6/metabolism , Monocytes/metabolism , Animals , Cell Differentiation , Female , Humans , Mice , Neoplasm Metastasis
2.
J Biol Chem ; 295(31): 10807-10821, 2020 07 31.
Article in English | MEDLINE | ID: mdl-32532796

ABSTRACT

In the peripheral nerve, mechanosensitive axons are insulated by myelin, a multilamellar membrane formed by Schwann cells. Here, we offer first evidence that a myelin degradation product induces mechanical hypersensitivity and global transcriptomics changes in a sex-specific manner. Focusing on downstream signaling events of the functionally active 84-104 myelin basic protein (MBP(84-104)) fragment released after nerve injury, we demonstrate that exposing the sciatic nerve to MBP(84-104) via endoneurial injection produces robust mechanical hypersensitivity in female, but not in male, mice. RNA-seq and systems biology analysis revealed a striking sexual dimorphism in molecular signatures of the dorsal root ganglia (DRG) and spinal cord response, not observed at the nerve injection site. Mechanistically, intra-sciatic MBP(84-104) induced phospholipase C (PLC)-driven (females) and phosphoinositide 3-kinase-driven (males) phospholipid metabolism (tier 1). PLC/inositol trisphosphate receptor (IP3R) and estrogen receptor co-regulation in spinal cord yielded Ca2+-dependent nociceptive signaling induction in females that was suppressed in males (tier 2). IP3R inactivation by intrathecal xestospongin C attenuated the female-specific hypersensitivity induced by MBP(84-104). According to sustained sensitization in tiers 1 and 2, T cell-related signaling spreads to the DRG and spinal cord in females, but remains localized to the sciatic nerve in males (tier 3). These results are consistent with our previous finding that MBP(84-104)-induced pain is T cell-dependent. In summary, an autoantigenic peptide endogenously released in nerve injury triggers multisite, sex-specific transcriptome changes, leading to neuropathic pain only in female mice. MBP(84-104) acts through sustained co-activation of metabolic, estrogen receptor-mediated nociceptive, and autoimmune signaling programs.


Subject(s)
Calcium Signaling , Ganglia, Spinal/metabolism , Neuralgia/metabolism , RNA-Seq , Sciatic Nerve/metabolism , Sex Characteristics , Transcriptome , Animals , Female , Ganglia, Spinal/pathology , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Male , Mice , Myelin Basic Protein/toxicity , Neuralgia/chemically induced , Neuralgia/pathology , Peptide Fragments/toxicity , Sciatic Nerve/pathology , Type C Phospholipases/metabolism
3.
Cancer Res ; 79(22): 5839-5848, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31585939

ABSTRACT

Cancer cells respond to hypoxia by upregulating the hypoxia-inducible factor 1α (HIF1A) transcription factor, which drives survival mechanisms that include metabolic adaptation and induction of angiogenesis by VEGF. Pancreatic tumors are poorly vascularized and severely hypoxic. To study the angiogenic role of HIF1A, and specifically probe whether tumors are able to use alternative pathways in its absence, we created a xenograft mouse tumor model of pancreatic cancer lacking HIF1A. After an initial delay of about 30 days, the HIF1A-deficient tumors grew as rapidly as the wild-type tumors and had similar vascularization. These changes were maintained in subsequent passages of tumor xenografts in vivo and in cell lines ex vivo. There were many cancer cells with a "clear-cell" phenotype in the HIF1A-deficient tumors; this was the result of accumulation of glycogen. Single-cell RNA sequencing (scRNA-seq) of the tumors identified hypoxic cancer cells with inhibited glycogen breakdown, which promoted glycogen accumulation and the secretion of inflammatory cytokines, including interleukins 1ß (IL1B) and 8 (IL8). scRNA-seq of the mouse tumor stroma showed enrichment of two subsets of myeloid dendritic cells (cDC), cDC1 and cDC2, that secreted proangiogenic cytokines. These results suggest that glycogen accumulation associated with a clear-cell phenotype in hypoxic cancer cells lacking HIF1A can initiate an alternate pathway of cytokine and DC-driven angiogenesis. Inhibiting glycogen accumulation may provide a treatment for cancers with the clear-cell phenotype. SIGNIFICANCE: These findings establish a novel mechanism by which tumors support angiogenesis in an HIF1α-independent manner.


Subject(s)
Cell Proliferation/physiology , Glycogen/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Inflammation/metabolism , Neovascularization, Pathologic/metabolism , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Animals , Cell Line, Tumor , Hypoxia/metabolism , Hypoxia/pathology , Inflammation/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Neovascularization, Pathologic/pathology , Pancreas/metabolism , Pancreas/pathology , Signal Transduction/physiology
4.
Cancer Res ; 73(11): 3235-47, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23633488

ABSTRACT

Pancreatic cancer is characterized by a desmoplastic reaction that creates a dense fibroinflammatory microenvironment, promoting hypoxia and limiting cancer drug delivery due to decreased blood perfusion. Here, we describe a novel tumor-stroma interaction that may help explain the prevalence of desmoplasia in this cancer. Specifically, we found that activation of hypoxia-inducible factor-1α (HIF-1α) by tumor hypoxia strongly activates secretion of the sonic hedgehog (SHH) ligand by cancer cells, which in turn causes stromal fibroblasts to increase fibrous tissue deposition. In support of this finding, elevated levels of HIF-1α and SHH in pancreatic tumors were determined to be markers of decreased patient survival. Repeated cycles of hypoxia and desmoplasia amplified each other in a feed forward loop that made tumors more aggressive and resistant to therapy. This loop could be blocked by HIF-1α inhibition, which was sufficient to block SHH production and hedgehog signaling. Taken together, our findings suggest that increased HIF-1α produced by hypoxic tumors triggers the desmoplasic reaction in pancreatic cancer, which is then amplified by a feed forward loop involving cycles of decreased blood flow and increased hypoxia. Our findings strengthen the rationale for testing HIF inhibitors and may therefore represent a novel therapeutic option for pancreatic cancer.


Subject(s)
Cell Communication/physiology , Hedgehog Proteins/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Pancreatic Neoplasms/pathology , Animals , Cell Hypoxia/drug effects , Cell Hypoxia/physiology , Cell Line, Tumor , HEK293 Cells , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors , Immunohistochemistry , Mice , Mustard Compounds/pharmacology , NIH 3T3 Cells , Pancreatic Neoplasms/drug therapy , Pancreatic Neoplasms/genetics , Pancreatic Neoplasms/metabolism , Phenylpropionates/pharmacology , Prognosis , Retrospective Studies , Signal Transduction/drug effects , Stromal Cells/metabolism , Stromal Cells/pathology , Transfection
5.
Clin Cancer Res ; 19(13): 3383-95, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23659968

ABSTRACT

PURPOSE: The ETS2 transcription factor is an evolutionarily conserved gene that is deregulated in cancer. We analyzed the transcriptome of lung adenocarcinomas and normal lung tissue by expression profiling and found that ETS2 was significantly downregulated in adenocarcinomas. In this study, we probed the yet unknown functional role of ETS2 in lung cancer pathogenesis. EXPERIMENTAL DESIGN: Lung adenocarcinomas (n = 80) and normal lung tissues (n = 30) were profiled using the Affymetrix Human Gene 1.0 ST platform. Immunohistochemical (IHC) analysis was conducted to determine ETS2 protein expression in non-small cell lung cancer (NSCLC) histologic tissue specimens (n = 201). Patient clinical outcome, based on ETS2 IHC expression, was statistically assessed using the log-rank and Kaplan-Meier tests. RNA interference and overexpression strategies were used to assess the effects of ETS2 expression on the transcriptome and on various malignant phenotypes. RESULTS: ETS2 expression was significantly reduced in lung adenocarcinomas compared with normal lung (P < 0.001). Low ETS2 IHC expression was a significant predictor of shorter time to recurrence in NSCLC (P = 0.009, HR = 1.89) and adenocarcinoma (P = 0.03, HR = 1.86). Moreover, ETS2 was found to significantly inhibit lung cancer cell growth, migration, and invasion (P < 0.05), and microarray and pathways analysis revealed significant (P < 0.001) activation of the HGF pathway following ETS2 knockdown. In addition, ETS2 was found to suppress MET phosphorylation and knockdown of MET expression significantly attenuated (P < 0.05) cell invasion mediated by ETS2-specific siRNA. Furthermore, knockdown of ETS2 augmented HGF-induced MET phosphorylation, cell migration, and invasion. CONCLUSION(S): Our findings point to a tumor suppressor role for ETS2 in human NSCLC pathogenesis through inhibition of the MET proto-oncogene.


Subject(s)
Carcinoma, Non-Small-Cell Lung/genetics , Lung Neoplasms/genetics , Proto-Oncogene Protein c-ets-2/genetics , Proto-Oncogene Proteins c-met/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation , Cluster Analysis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Hepatocyte Growth Factor/metabolism , Humans , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Neoplasm Invasiveness , Proto-Oncogene Mas , Proto-Oncogene Protein c-ets-2/metabolism , Proto-Oncogene Proteins c-met/metabolism , Recurrence , Signal Transduction
6.
Nature ; 497(7449): 383-7, 2013 May 16.
Article in English | MEDLINE | ID: mdl-23636329

ABSTRACT

MicroRNAs (miRNAs) are generated by two-step processing to yield small RNAs that negatively regulate target gene expression at the post-transcriptional level. Deregulation of miRNAs has been linked to diverse pathological processes, including cancer. Recent studies have also implicated miRNAs in the regulation of cellular response to a spectrum of stresses, such as hypoxia, which is frequently encountered in the poorly angiogenic core of a solid tumour. However, the upstream regulators of miRNA biogenesis machineries remain obscure, raising the question of how tumour cells efficiently coordinate and impose specificity on miRNA expression and function in response to stresses. Here we show that epidermal growth factor receptor (EGFR), which is the product of a well-characterized oncogene in human cancers, suppresses the maturation of specific tumour-suppressor-like miRNAs in response to hypoxic stress through phosphorylation of argonaute 2 (AGO2) at Tyr 393. The association between EGFR and AGO2 is enhanced by hypoxia, leading to elevated AGO2-Y393 phosphorylation, which in turn reduces the binding of Dicer to AGO2 and inhibits miRNA processing from precursor miRNAs to mature miRNAs. We also identify a long-loop structure in precursor miRNAs as a critical regulatory element in phospho-Y393-AGO2-mediated miRNA maturation. Furthermore, AGO2-Y393 phosphorylation mediates EGFR-enhanced cell survival and invasiveness under hypoxia, and correlates with poorer overall survival in breast cancer patients. Our study reveals a previously unrecognized function of EGFR in miRNA maturation and demonstrates how EGFR is likely to function as a regulator of AGO2 through novel post-translational modification. These findings suggest that modulation of miRNA biogenesis is important for stress response in tumour cells and has potential clinical implications.


Subject(s)
Argonaute Proteins/chemistry , Argonaute Proteins/metabolism , Cell Hypoxia/physiology , ErbB Receptors/metabolism , MicroRNAs/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Hypoxia/genetics , Cell Line, Tumor , Cell Survival , Female , Gene Expression Regulation, Neoplastic , Humans , MicroRNAs/biosynthesis , MicroRNAs/chemistry , MicroRNAs/genetics , Neoplasm Invasiveness , Nucleic Acid Conformation , Phosphorylation , Phosphotyrosine/metabolism , Prognosis , Protein Binding , RNA Precursors/chemistry , RNA Precursors/genetics , RNA Precursors/metabolism , Ribonuclease III/metabolism , Survival Analysis
7.
Free Radic Biol Med ; 46(6): 821-7, 2009 Mar 15.
Article in English | MEDLINE | ID: mdl-19135146

ABSTRACT

LAMMER kinases (also known as CDC-2-like or CLKs) are a family of dual specificity serine/threonine protein kinases that are found in all sequenced eukaryotic genomes. In the fission yeast, Schizosaccharomyces pombe, the LAMMER kinase gene, Lkh1, positively regulates the expression of the antioxidant defense genes, superoxide dismutase 1 (sod1+, CuZn-SOD) and catalase (ctt1+, CAT). We have shown that mutations in the Drosophila LAMMER kinase gene, Darkener of apricot (Doa), protect against the decrease in life span caused by the reactive oxygen species (ROS) generator paraquat, and at the same time show an increase in cytoplasmic (CuZn-Sod or SOD1) and mitochondrial superoxide dismutase (Mn-Sod or SOD2) protein levels and activity. The siRNA-mediated knock down of the human LAMMER kinase gene, CLK-1, in HeLa and MCF-7 human cell lines leads to an increase in both SOD1 activity and mRNA transcript levels. These data suggest that SOD1 is negatively regulated by LAMMER kinases in Drosophila and human cell lines and that this regulation may be conserved during evolution.


Subject(s)
Drosophila Proteins/metabolism , Mutation , Protein Serine-Threonine Kinases/metabolism , Protein-Tyrosine Kinases/metabolism , Superoxide Dismutase/metabolism , Aging, Premature/genetics , Aging, Premature/metabolism , Aging, Premature/mortality , Animals , Drosophila Proteins/genetics , Drosophila melanogaster , Enzyme Activation/drug effects , Gene Expression Regulation , HeLa Cells , Humans , Oxidative Stress/drug effects , Oxidative Stress/genetics , Paraquat/metabolism , Protein Serine-Threonine Kinases/genetics , Protein-Tyrosine Kinases/genetics , RNA, Small Interfering/genetics , Superoxide Dismutase/genetics , Superoxide Dismutase-1 , Survival Analysis , Thiazoles/pharmacology
8.
Mol Biol Cell ; 18(10): 4190-9, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17699602

ABSTRACT

The control of gene expression by the mitogen-activated protein (MAP) kinase extracellular signal-regulated kinase (ERK) requires its translocation into the nucleus. In Drosophila S2 cells nuclear accumulation of diphospho-ERK (dpERK) is greatly reduced by interfering double-stranded RNA against Drosophila importin-7 (DIM-7) or by the expression of integrin mutants, either during active cell spreading or after stimulation by insulin. In both cases, total ERK phosphorylation (on Westerns) is not significantly affected, and ERK accumulates in a perinuclear ring. Tyrosine phosphorylation of DIM-7 is reduced in cells expressing integrin mutants, indicating a mechanistic link between these components. DIM-7 and integrins localize to the same actin-containing peripheral regions in spreading cells, but DIM-7 is not concentrated in paxillin-positive focal contacts or stable focal adhesions. The Corkscrew (SHP-2) tyrosine phosphatase binds DIM-7, and Corkscrew is required for the cortical localization of DIM-7. These data suggest a model in which ERK phosphorylation must be spatially coupled to integrin-mediated DIM-7 activation to make a complex that can be imported efficiently. Moreover, dpERK nuclear import can be restored in DIM-7-deficient cells by Xenopus Importin-7, demonstrating that ERK import is an evolutionarily conserved function of this protein.


Subject(s)
Cell Nucleus/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Integrin alpha Chains/metabolism , Karyopherins/metabolism , Animals , Cell Movement/drug effects , Cell Nucleus/drug effects , Cell Nucleus/enzymology , Cytoplasm/drug effects , Cytoplasm/enzymology , Drosophila melanogaster/drug effects , Drosophila melanogaster/enzymology , Focal Adhesions/drug effects , Insulin/pharmacology , Models, Biological , Mutation/genetics , Phosphoproteins/metabolism , Phosphorylation/drug effects , Phosphotyrosine/metabolism , Protein Transport/drug effects , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Xenopus
SELECTION OF CITATIONS
SEARCH DETAIL
...