Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
PLoS One ; 19(2): e0297353, 2024.
Article in English | MEDLINE | ID: mdl-38408066

ABSTRACT

Numerous pathogenic processes are mediated by short noncoding RNAs (sncRNA). Twenty percent of inflammatory bowel disease (IBD) patients are labelled as IBD unclassified (IBDU) at disease onset. Most IBDU patients are reclassified as Crohn's disease (CD) or ulcerative colitis (UC) within few years. Since the therapeutic methods for CD and UC differ, biomarkers that can forecast the categorization of IBDU into CD or UC are highly desired. Here, we investigated whether sncRNAs can predict CD or UC among IBDU patients. 35 IBDU patients who were initially diagnosed with IBDU were included in this retrospective investigation; of them, 12, 15, and 8 were reclassified into CD (IBDU-CD), UC (IBDU-UC), or remained as IBDU (IBDU-IBDU), respectively. Eight IBD patients, were included as references. SncRNA profiling on RNA from mucosal biopsies were performed using Affymetrix miRNA 4.0 array. Selected probe sets were validated using RT-qPCR. Among all patients and only adults, 306 and 499 probe sets respectively were differentially expressed between IBDU-CD and IBDU-UC. Six of the probe sets were evaluated by RT-qPCR, of which miR-182-5p, miR-451a and ENSG00000239080 (snoU13) together with age and sex resulted in an AUC of 78.6% (95% CI: 60-97) in discriminating IBDU-CD from IBDU-UC. Based on the three sncRNAs profile it is possible to predict if IBDU patients within 3 years will be reclassified as CD or UC. We showed that the expression profile of IBDU patients differ from that of definite CD or UC, suggesting that a subgroup of IBDU patients may compose a third unique IBD subtype.


Subject(s)
Colitis, Ulcerative , Crohn Disease , Inflammatory Bowel Diseases , MicroRNAs , RNA, Small Untranslated , Adult , Humans , Colitis, Ulcerative/diagnosis , Colitis, Ulcerative/genetics , Colitis, Ulcerative/drug therapy , Crohn Disease/diagnosis , Crohn Disease/genetics , Crohn Disease/drug therapy , Retrospective Studies , Inflammatory Bowel Diseases/drug therapy , MicroRNAs/genetics , Biomarkers
2.
Scand J Gastroenterol ; 58(11): 1237-1245, 2023.
Article in English | MEDLINE | ID: mdl-37246424

ABSTRACT

BACKGROUND AND AIMS: Tumour necrosis factor-α (TNF) antagonists have improved the management of inflammatory bowel disease (IBD), however, their usage and administration persist to be suboptimal. Here, we examined the relationship between tissue-specific TNF mRNA expression in mucosal biopsies from IBD patients and anti-TNF treatment response. METHODS: Archived tissue samples from patients with luminal IBD that had all been or were in treatment with anti-TNF were included (18 adults and 24 paediatric patients). Patients were stratified into three groups according to anti-TNF response: responders, primary non-responders (PNR) and secondary loss of response (SLOR). TNF mRNA was detected using RNAscope in situ hybridisation (ISH) and the expression was quantified using image analysis. RESULTS: The ISH analysis showed varying occurrence of TNF mRNA positive cells located in lamina propria and often with increased density in lymphoid follicles (LF). Consequently, expression estimates were obtained in whole tissue areas with and without LF. Significantly higher TNF mRNA expression levels were measured in adults compared to paediatric patients in both the analyses with and without LF (p = .015 and p = .016, respectively). Considering the relation to response, the adult and paediatric patients were evaluated separately. In adults, the TNF expression estimates were higher in PNRs compared to responders with and without LF (p = .017 and p = .024, respectively). CONCLUSION: Our data indicate that adult PNR have significantly higher TNF mRNA levels than responders. This suggests that higher anti-TNF dose may be considered for IBD patients with high TNF mRNA expression estimates from the start of treatment.


Subject(s)
Inflammatory Bowel Diseases , Tumor Necrosis Factor-alpha , Adult , Humans , Child , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Tumor Necrosis Factor Inhibitors/therapeutic use , RNA, Messenger/genetics , Intestinal Mucosa/pathology , Inflammatory Bowel Diseases/pathology
3.
Aging (Albany NY) ; 13(5): 6359-6374, 2021 03 01.
Article in English | MEDLINE | ID: mdl-33647883

ABSTRACT

Despite significant evidence that the expression of several microRNAs (miRNAs) impacts disease activity in patients with ulcerative colitis (UC), it remains unknown if the more severe disease phenotype seen in pediatric onset UC can be explained by an altered miRNA expression. In this study, we assessed the relationship between miRNA expression, age, and disease severity in pediatric and adult patients with UC. Using RT-qPCR, we analyzed the expression of miR-21, miR-31, miR-126, miR-142 and miR-155 in paraffin embedded rectum biopsies from 30 pediatric and 30 adult-onset UC patients. We found that lesions from adult patients had significantly higher expression levels of miR-21 compared to pediatric patients and that the expression levels of miR-31 (all patients) and miR-155 (pediatric patients only) correlated inversely with histological assessed disease severity. Using in situ hybridization followed by image analysis, the expression level estimates of miR-21 and miR-126 correlated with histological assessed disease severity. In conclusion, we found that the expression of miRNAs depends on the age of the patient and/or the severity of the disease, suggesting that miRNAs may contribute to the regulation of inflammation in UC and could be useful biomarkers in the surveillance of disease severity.


Subject(s)
Colitis, Ulcerative/metabolism , Intestinal Mucosa/metabolism , MicroRNAs/metabolism , Severity of Illness Index , Adolescent , Adult , Biomarkers/metabolism , Child , Female , Humans , Male , Young Adult
4.
Int J Mol Sci ; 21(21)2020 Oct 24.
Article in English | MEDLINE | ID: mdl-33114313

ABSTRACT

Inflammatory bowel disease (IBD) includes Crohn's disease (CD) and ulcerative colitis (UC). These are chronic autoimmune diseases of unknown etiology affecting the gastrointestinal tract. The IBD population includes a heterogeneous group of patients with varying disease courses requiring personalized treatment protocols. The complexity of the disease often delays the diagnosis and the initiation of appropriate treatments. In a subset of patients, IBD leads to colitis-associated cancer (CAC). MicroRNAs are single-stranded regulatory noncoding RNAs of 18 to 22 nucleotides with putative roles in the pathogenesis of IBD and colorectal cancer. They have been explored as biomarkers and therapeutic targets. Both tissue-derived and circulating microRNAs have emerged as promising biomarkers in the differential diagnosis and in the prognosis of disease severity of IBD as well as predictive biomarkers in drug resistance. In addition, knowledge of the cellular localization of differentially expressed microRNAs is a prerequisite for deciphering the biological role of these important epigenetic regulators and the cellular localization may even contribute to an alternative repertoire of biomarkers. In this review, we discuss findings based on RT-qPCR, microarray profiling, next generation sequencing and in situ hybridization of microRNA biomarkers identified in the circulation and in tissue biopsies.


Subject(s)
Colitis-Associated Neoplasms/genetics , Genetic Markers , Inflammatory Bowel Diseases/genetics , MicroRNAs/genetics , Colitis-Associated Neoplasms/etiology , Diagnosis, Differential , Early Diagnosis , Epigenesis, Genetic , Female , Gene Expression Regulation , Humans , Inflammatory Bowel Diseases/complications , Male
5.
Methods Mol Biol ; 2148: 99-110, 2020.
Article in English | MEDLINE | ID: mdl-32394377

ABSTRACT

MicroRNA-21 (miR-21) is one of the most abundant microRNAs in cancer tissues and is considered a strong prognostic biomarker. In situ hybridization (ISH) analyses using locked nucleic acid (LNA) probes have shown that miR-21 is expressed in stromal fibroblastic cells and in subsets of cancer cells. Image analysis of the miR-21 ISH signal has shown that increased expression estimate is associated with poor prognosis in colon cancer. However, assessment of the ISH signal by image analysis to obtain quantitative estimates has been done in retrospective studies without normalization of the expression estimates to reference parameters. The ISH signal output is sensitive to several experimental parameters, including hybridization temperature, probe concentration, and pretreatment, and therefore improved standardized procedures are warranted. We considered the use of paraffin-embedded cultured cells (PECCs) as reference standards that potentially can accompany staining of clinical cancer samples. We found that the cancer cell lines HT-29, CACO-2, and HeLa cells express miR-21 when measured by ISH, and used those cell lines to obtain PECCs. In this methods chapter we present a fixation and embedding procedure to obtain PECCs suitable for microRNA ISH and a double-fluorescence protocol to stain microRNAs together with protein markers in the PECCs.


Subject(s)
In Situ Hybridization/methods , MicroRNAs/isolation & purification , Paraffin Embedding/methods , Caco-2 Cells , HeLa Cells , Humans , MicroRNAs/genetics
6.
Int J Mol Sci ; 20(8)2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30999696

ABSTRACT

MicroRNA-21 (miR-21) is upregulated in many cancers including colon cancers and is a prognostic indicator of recurrence and poor prognosis. In colon cancers, miR-21 is highly expressed in stromal fibroblastic cells and more weakly in a subset of cancer cells, particularly budding cancer cells. Exploration of the expression of inflammatory markers in colon cancers revealed tumor necrosis factor alpha (TNF-α) mRNA expression at the invasive front of colon cancers. Surprisingly, a majority of the TNF-α mRNA expressing cells were found to be cancer cells and not inflammatory cells. Because miR-21 is positively involved in cell survival and TNF-α promotes necrosis, we found it interesting to analyze the presence of miR-21 in areas of TNF-α mRNA expression at the invasive front of colon cancers. For this purpose, we developed an automated procedure for the co-staining of miR-21, TNF-α mRNA and the cancer cell marker cytokeratin based on analysis of frozen colon cancer tissue samples (n = 4) with evident cancer cell budding. In all four cases, TNF-α mRNA was seen in a small subset of cancer cells at the invasive front. Evaluation of miR-21 and TNF-α mRNA expression was performed on digital slides obtained by confocal slide scanning microscopy. Both co-expression and lack of co-expression with miR-21 in the budding cancer cells was noted, suggesting non-correlated expression. miR-21 was more often seen in cancer cells than TNF-α mRNA. In conclusion, we report that miR-21 is not linked to expression of the pro-inflammatory cytokine TNF-α mRNA, but that miR-21 and TNF-α both take part in the cancer expansion at the invasive front of colon cancers. We hypothesize that miR-21 may protect both fibroblasts and cancer cells from cell death directed by TNF-α paracrine and autocrine activity.


Subject(s)
Colon/pathology , Colorectal Neoplasms/pathology , MicroRNAs/analysis , RNA, Messenger/analysis , Tumor Necrosis Factor-alpha/genetics , Colorectal Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Humans , Inflammation/genetics , Inflammation/pathology , MicroRNAs/genetics , Microscopy, Confocal , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...