Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Blood ; 144(2): 171-186, 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38579288

ABSTRACT

ABSTRACT: Multiple myeloma is a plasma cell malignancy that is currently incurable with conventional therapies. Following the success of CD19-targeted chimeric antigen receptor (CAR) T cells in leukemia and lymphoma, CAR T cells targeting B-cell maturation antigen (BCMA) more recently demonstrated impressive activity in relapsed and refractory myeloma patients. However, BCMA-directed therapy can fail due to weak expression of BCMA on myeloma cells, suggesting that novel approaches to better address this antigen-low disease may improve patient outcomes. We hypothesized that engineered secretion of the proinflammatory cytokine interleukin-18 (IL-18) and multiantigen targeting could improve CAR T-cell activity against BCMA-low myeloma. In a syngeneic murine model of myeloma, CAR T cells targeting the myeloma-associated antigens BCMA and B-cell activating factor receptor (BAFF-R) failed to eliminate myeloma when these antigens were weakly expressed, whereas IL-18-secreting CAR T cells targeting these antigens promoted myeloma clearance. IL-18-secreting CAR T cells developed an effector-like T-cell phenotype, promoted interferon-gamma production, reprogrammed the myeloma bone marrow microenvironment through type-I/II interferon signaling, and activated macrophages to mediate antimyeloma activity. Simultaneous targeting of weakly-expressed BCMA and BAFF-R with dual-CAR T cells enhanced T-cell:target-cell avidity, increased overall CAR signal strength, and stimulated antimyeloma activity. Dual-antigen targeting augmented CAR T-cell secretion of engineered IL-18 and facilitated elimination of larger myeloma burdens in vivo. Our results demonstrate that combination of engineered IL-18 secretion and multiantigen targeting can eliminate myeloma with weak antigen expression through distinct mechanisms.


Subject(s)
B-Cell Maturation Antigen , Immunotherapy, Adoptive , Interleukin-18 , Multiple Myeloma , Animals , Multiple Myeloma/immunology , Multiple Myeloma/therapy , Multiple Myeloma/pathology , Mice , Interleukin-18/immunology , Immunotherapy, Adoptive/methods , B-Cell Maturation Antigen/immunology , Humans , Receptors, Chimeric Antigen/immunology , Disease Models, Animal , Antigens, Neoplasm/immunology , T-Lymphocytes/immunology , T-Lymphocytes/metabolism , Cell Line, Tumor
2.
J Clin Invest ; 131(16)2021 08 16.
Article in English | MEDLINE | ID: mdl-34396986

ABSTRACT

Therapeutic vaccines that augment T cell responses to tumor antigens have been limited by poor potency in clinical trials. In contrast, the transfer of T cells modified with foreign transgenes frequently induces potent endogenous T cell responses to epitopes in the transgene product, and these responses are undesirable, because they lead to rejection of the transferred T cells. We sought to harness gene-modified T cells as a vaccine platform and developed cancer vaccines composed of autologous T cells modified with tumor antigens and additional adjuvant signals (Tvax). T cells expressing model antigens and a broad range of tumor neoantigens induced robust and durable T cell responses through cross-presentation of antigens by host DCs. Providing Tvax with signals such as CD80, CD137L, IFN-ß, IL-12, GM-CSF, and FLT3L enhanced T cell priming. Coexpression of IL-12 and GM-CSF induced the strongest CD4+ and CD8+ T cell responses through complimentary effects on the recruitment and activation of DCs, mediated by autocrine IL-12 receptor signaling in the Tvax. Therapeutic vaccination with Tvax and adjuvants showed antitumor activity in subcutaneous and metastatic preclinical mouse models. Human T cells modified with neoantigens readily activated specific T cells derived from patients, providing a path for clinical translation of this therapeutic platform in cancer.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , Cancer Vaccines/therapeutic use , Adjuvants, Immunologic/administration & dosage , Allografts , Animals , Antigen Presentation , Antigens, Neoplasm/administration & dosage , Autografts , CD8-Positive T-Lymphocytes/transplantation , Cancer Vaccines/immunology , Cross Reactions/immunology , Dendritic Cells/immunology , Female , Humans , Immunologic Memory , Immunotherapy, Adoptive , Interleukin-12/immunology , Lymphoid Tissue/immunology , Male , Melanoma, Experimental/immunology , Melanoma, Experimental/therapy , Mice , Mice, Inbred C57BL , Mice, Knockout , Translational Research, Biomedical
3.
Nat Med ; 23(2): 242-249, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28067900

ABSTRACT

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a potentially curative therapy for hematological malignancies. However, graft-versus-host disease (GVHD) and relapse after allo-HSCT remain major impediments to the success of allo-HSCT. Chimeric antigen receptors (CARs) direct tumor cell recognition of adoptively transferred T cells. CD19 is an attractive CAR target, which is expressed in most B cell malignancies, as well as in healthy B cells. Clinical trials using autologous CD19-targeted T cells have shown remarkable promise in various B cell malignancies. However, the use of allogeneic CAR T cells poses a concern in that it may increase risk of the occurrence of GVHD, although this has not been reported in selected patients infused with donor-derived CD19 CAR T cells after allo-HSCT. To understand the mechanism whereby allogeneic CD19 CAR T cells may mediate anti-lymphoma activity without causing a significant increase in the incidence of GVHD, we studied donor-derived CD19 CAR T cells in allo-HSCT and lymphoma models in mice. We demonstrate that alloreactive T cells expressing CD28-costimulated CD19 CARs experience enhanced stimulation, resulting in the progressive loss of both their effector function and proliferative potential, clonal deletion, and significantly decreased occurrence of GVHD. Concurrently, the other CAR T cells that were present in bulk donor T cell populations retained their anti-lymphoma activity in accordance with the requirement that both the T cell receptor (TCR) and CAR be engaged to accelerate T cell exhaustion. In contrast, first-generation and 4-1BB-costimulated CAR T cells increased the occurrence of GVHD. These findings could explain the reduced risk of GVHD occurring with cumulative TCR and CAR signaling.


Subject(s)
Graft vs Host Reaction/immunology , Graft vs Tumor Effect/immunology , Hematopoietic Stem Cell Transplantation , Lymphoma/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , 4-1BB Ligand/immunology , Adoptive Transfer , Animals , Antigens, CD19/metabolism , B-Lymphocytes/immunology , CD28 Antigens , Chimera , Cytokines/immunology , Disease Models, Animal , Flow Cytometry , Graft vs Host Disease/immunology , Mice , T-Lymphocytes/metabolism , Transplantation, Homologous
4.
J Immunol ; 184(8): 4284-94, 2010 Apr 15.
Article in English | MEDLINE | ID: mdl-20220093

ABSTRACT

We investigated relationships among chimeric TCR (cTCR) expression density, target Ag density, and cTCR triggering to predict lysis of target cells by cTCR(+) CD8(+) T human cells as a function of Ag density. Triggering of cTCR and canonical TCR by Ag could be quantified by the same mathematical equation, but cTCR represented a special case in which serial triggering was abrogated. The magnitude of target lysis could be predicted as a function of cTCR triggering, and the predicted minimum cTCR density required for maximal target lysis by CD20-specific cTCR was experimentally tested. cTCR density below approximately 20,000 cTCR/cell impaired target lysis, but increasing cTCR expression above this density did not improve target lysis or Ag sensitivity. cTCR downmodulation to densities below this critical minimum by interaction with Ag-expressing targets limited the sequential lysis of targets in a manner that could be predicted based on the number of cTCRs remaining. In contrast, acute inhibition of lysis of primary, intended targets (e.g., leukemic B cells) due to the presence of an excess of secondary targets (e.g., normal B cells) was dependent on the Ag density of the secondary target but occurred at Ag densities insufficient to promote significant cTCR downmodulation, suggesting a role for functional exhaustion rather than insufficient cTCR density. This suggests increasing cTCR density above a critical threshold may enhance sequential lysis of intended targets in isolation, but will not overcome the functional exhaustion of cTCR(+) T cells encountered in the presence of secondary targets with high Ag density.


Subject(s)
Cytotoxicity, Immunologic/genetics , Down-Regulation/genetics , Down-Regulation/immunology , Models, Immunological , Mutant Chimeric Proteins/antagonists & inhibitors , Mutant Chimeric Proteins/genetics , Receptors, Antigen, T-Cell/antagonists & inhibitors , Receptors, Antigen, T-Cell/genetics , Antigens, CD20/immunology , B-Lymphocyte Subsets/immunology , B-Lymphocyte Subsets/metabolism , B-Lymphocyte Subsets/pathology , Cell Line, Transformed , Cell Line, Tumor , Cell Survival/genetics , Cell Survival/immunology , Dose-Response Relationship, Immunologic , Humans , Jurkat Cells , Linear Models , Mutant Chimeric Proteins/biosynthesis , Predictive Value of Tests , Receptors, Antigen, T-Cell/biosynthesis , Sialic Acid Binding Ig-like Lectin 2/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/pathology
5.
Blood ; 114(27): 5454-63, 2009 Dec 24.
Article in English | MEDLINE | ID: mdl-19880489

ABSTRACT

We have established a model of leukemia immunotherapy using T cells expressing chimeric T-cell receptors (cTCRs) targeting the CD20 molecule expressed on normal and neoplastic B cells. After transfer into human CD20 (hCD20) transgenic mice, cTCR(+) T cells showed antigen-specific delayed egress from the lungs, concomitant with T-cell deletion. Few cTCR(+) T cells reached the bone marrow (BM) in hCD20 transgenic mice, precluding effectiveness against leukemia. Anti-hCD20 antibody-mediated B-cell depletion before adoptive T-cell therapy permitted egress of mouse CD20-specific cTCR(+) T cells from the lungs, enhanced T-cell survival, and promoted cTCR(+) T cell-dependent elimination of established mouse CD20(+) leukemia. Furthermore, CD20-specific cTCR(+) T cells eliminated residual B cells refractory to depletion with monoclonal antibodies. These findings suggest that combination of antibody therapy that depletes antigen-expressing normal tissues with adoptive T-cell immunotherapy enhances the ability of cTCR(+) T cells to survive and control tumors.


Subject(s)
Antibodies, Monoclonal/immunology , Antigens, CD20/immunology , B-Lymphocytes/immunology , Leukemia/immunology , Receptors, Antigen, T-Cell/immunology , T-Lymphocytes/immunology , Animals , Antigens, CD20/genetics , Antigens, CD20/metabolism , B-Lymphocytes/cytology , B-Lymphocytes/metabolism , CD3 Complex/immunology , Cell Line, Tumor , Cell Survival/immunology , Flow Cytometry , Humans , Immunotherapy, Adoptive , Leukemia/pathology , Leukemia/therapy , Mice , Mice, Inbred BALB C , Mice, Transgenic , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Survival Analysis , T-Lymphocytes/metabolism , T-Lymphocytes/transplantation
6.
Blood ; 112(6): 2261-71, 2008 Sep 15.
Article in English | MEDLINE | ID: mdl-18509084

ABSTRACT

Adoptive immunotherapy with T cells expressing a tumor-specific chimeric T-cell receptor is a promising approach to cancer therapy that has not previously been explored for the treatment of lymphoma in human subjects. We report the results of a proof-of-concept clinical trial in which patients with relapsed or refractory indolent B-cell lymphoma or mantle cell lymphoma were treated with autologous T cells genetically modified by electroporation with a vector plasmid encoding a CD20-specific chimeric T-cell receptor and neomycin resistance gene. Transfected cells were immunophenotypically similar to CD8(+) effector cells and showed CD20-specific cytotoxicity in vitro. Seven patients received a total of 20 T-cell infusions, with minimal toxicities. Modified T cells persisted in vivo 1 to 3 weeks in the first 3 patients, who received T cells produced by limiting dilution methods, but persisted 5 to 9 weeks in the next 4 patients who received T cells produced in bulk cultures followed by 14 days of low-dose subcutaneous interleukin-2 (IL-2) injections. Of the 7 treated patients, 2 maintained a previous complete response, 1 achieved a partial response, and 4 had stable disease. These results show the safety, feasibility, and potential antitumor activity of adoptive T-cell therapy using this approach. This trial was registered at www.clinicaltrials.gov as #NCT00012207.


Subject(s)
Antigens, CD20/genetics , Immunotherapy, Adoptive/methods , Lymphoma, Mantle-Cell/therapy , Lymphoma, Non-Hodgkin/therapy , T-Lymphocytes/transplantation , Adult , Aged , Female , Humans , Lymphocyte Transfusion/methods , Male , Middle Aged , Remission Induction , Salvage Therapy/methods , T-Lymphocytes/metabolism , Transfection , Transplantation, Autologous , Treatment Outcome
7.
J Immunol ; 180(10): 7028-38, 2008 May 15.
Article in English | MEDLINE | ID: mdl-18453625

ABSTRACT

We have targeted CD22 as a novel tumor-associated Ag for recognition by human CTL genetically modified to express chimeric TCR (cTCR) recognizing this surface molecule. CD22-specific cTCR targeting different epitopes of the CD22 molecule promoted efficient lysis of target cells expressing high levels of CD22 with a maximum lytic potential that appeared to decrease as the distance of the target epitope from the target cell membrane increased. Targeting membrane-distal CD22 epitopes with cTCR(+) CTL revealed defects in both degranulation and lytic granule targeting. CD22-specific cTCR(+) CTL exhibited lower levels of maximum lysis and lower Ag sensitivity than CTL targeting CD20, which has a shorter extracellular domain than CD22. This diminished sensitivity was not a result of reduced avidity of Ag engagement, but instead reflected weaker signaling per triggered cTCR molecule when targeting membrane-distal epitopes of CD22. Both of these parameters were restored by targeting a ligand expressing the same epitope, but constructed as a truncated CD22 molecule to approximate the length of a TCR:peptide-MHC complex. The reduced sensitivity of CD22-specific cTCR(+) CTL for Ag-induced triggering of effector functions has potential therapeutic applications, because such cells selectively lysed B cell lymphoma lines expressing high levels of CD22, but demonstrated minimal activity against autologous normal B cells, which express lower levels of CD22. Thus, our results demonstrate that cTCR signal strength, and consequently Ag sensitivity, can be modulated by differential choice of target epitopes with respect to distance from the cell membrane, allowing discrimination between targets with disparate Ag density.


Subject(s)
Cytotoxicity, Immunologic , Epitopes, T-Lymphocyte/immunology , Immunotherapy/methods , Receptors, Antigen, T-Cell/chemistry , Receptors, Antigen, T-Cell/immunology , Antigens, Neoplasm/immunology , CD8-Positive T-Lymphocytes/immunology , Cell Line, Tumor , Cell Membrane/chemistry , Epitopes, T-Lymphocyte/chemistry , Flow Cytometry , Humans , Leukemia, B-Cell/therapy , Lymphoma, B-Cell/therapy , Receptors, Antigen, T-Cell/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...