Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
1.
Talanta ; 276: 126230, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38762974

ABSTRACT

Colorectal cancer (CRC) is the third most common cancer in the world with a higher prevalence in the developed countries, mainly caused by environmental and lifestyle factors such as diet, particularly red meat consumption. The metabolic impact of high red meat consumption on the epithelial part of the colon was investigated using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MSI), to specifically analyze the epithelial substructure. Ten colons from rats fed for 100 days high red or white meat diet were subjected to untargeted MSI analyses using two spatial resolutions (100 µm and 10 µm) to evaluate metabolite changes in the epithelial part and to visualize the distribution of metabolites of interest within the epithelium crypts. Our results suggest a specific effect of red meat diet on the colonic epithelium metabolism, as evidenced by an increase of purine catabolism products or depletion in glutathione pool, reinforcing the hypothesis of increased oxidative stress with red meat diet. This study also highlighted cholesterol sulfate as another up-regulated metabolite, interestingly localized at the top of the crypts. Altogether, this study demonstrates the feasibility and the added value of using MSI to decipher the effect of high red meat diet on the colonic epithelium.

2.
Environ Int ; 186: 108585, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38521044

ABSTRACT

The chemical burden on the environment and human population is increasing. Consequently, regulatory risk assessment must keep pace to manage, reduce, and prevent adverse impacts on human and environmental health associated with hazardous chemicals. Surveillance of chemicals of known, emerging, or potential future concern, entering the environment-food-human continuum is needed to document the reality of risks posed by chemicals on ecosystem and human health from a one health perspective, feed into early warning systems and support public policies for exposure mitigation provisions and safe and sustainable by design strategies. The use of less-conventional sampling strategies and integration of full-scan, high-resolution mass spectrometry and effect-directed analysis in environmental and human monitoring programmes have the potential to enhance the screening and identification of a wider range of chemicals of known, emerging or potential future concern. Here, we outline the key needs and recommendations identified within the European Partnership for Assessment of Risks from Chemicals (PARC) project for leveraging these innovative methodologies to support the development of next-generation chemical risk assessment.


Subject(s)
Environmental Exposure , Environmental Monitoring , Humans , Environmental Exposure/analysis , Environmental Monitoring/methods , Environmental Monitoring/standards , Environmental Pollutants/analysis , Hazardous Substances/analysis , Mass Spectrometry/methods , Risk Assessment/methods
3.
Photochem Photobiol ; 100(2): 477-490, 2024.
Article in English | MEDLINE | ID: mdl-37485720

ABSTRACT

A reconstructed human epidermal model (RHE) colonized with human microbiota and sebum was developed to reproduce the complexity of the skin ecosystem in vitro. The RHE model was exposed to simulated solar radiation (SSR) with or without SPF50+ sunscreen (with UVB, UVA, long-UVA, and visible light protection). Structural identification of discriminant metabolites was acquired by nuclear magnetic resonance and metabolomic fingerprints were identified using reverse phase-ultra high-performance liquid chromatography-high resolution mass spectrometry, followed by pathway enrichment analysis. Over 50 metabolites were significantly altered by SSR (p < 0.05, log2 values), showing high skin oxidative stress (glutathione and purine pathways, urea cycle) and altered skin microbiota (branched-chain amino acid cycle and tryptophan pathway). 16S and internal transcribed spacer rRNA sequencing showed the relative abundance of various bacteria and fungi altered by SSR. This study identified highly accurate metabolomic fingerprints and metagenomic modifications of sun-exposed skin to help elucidate the interactions between the skin and its microbiota. Application of SPF50+ sunscreen protected the skin ecosystem model from the deleterious effects of SSR and preserved the physiological interactions within the skin ecosystem. These innovative technologies could thus be used to evaluate the effectiveness of sunscreen.


Subject(s)
Multiomics , Sunscreening Agents , Humans , Skin/radiation effects , Sunscreening Agents/pharmacology , Sunscreening Agents/chemistry , Ultraviolet Rays
4.
Reprod Toxicol ; 118: 108380, 2023 06.
Article in English | MEDLINE | ID: mdl-37003567

ABSTRACT

Ovarian cells are critical for reproduction and steroidogenesis, which are functions that can be impacted by exposure to xenobiotics. As in other extra-hepatic tissues, biotransformation events may occur at the ovarian level. Such metabolic events deserve interest, notably as they may modulate the overall exposure and toxicity of xenobiotics. In this study, the comparative metabolic fate of two bisphenols was investigated in ovarian cells. Bisphenol A (BPA), a model endocrine disruptor, and its major substitute bisphenol S (BPS) were selected. Bovine granulosa cells (primary cultures) and theca explants (ex vivo tissue) were exposed for 24 hr to tritium-labeled BPA, BPS and their respective glucuronides (i.e. their major circulating forms), at concentrations consistent with low-dose exposure scenarios. Mass balance studies were performed, followed by radio-HPLC profiling. The capability of both cell compartments to biotransform BPA and BPS into their respective sulfo-conjugates was demonstrated, with sulfation being the predominant metabolic route. In theca, there was a significantly higher persistence of BPA (compared to BPS) residues over 24 hr. Moreover, only theca explants were able to deconjugate inactive BPA-glucuronide and BPS-glucuronide back into their biologically active aglycone forms. Deconjugation rates were demonstrated to be higher for BPS-G than for BPA-G. These findings raise concerns about the in situ direct release of bisphenols at the level of the ovary and demonstrate the relevance of exploring the biotransformation of bisphenols and their circulating metabolites in different ovarian cells with specific metabolic capabilities. This work also provides essential knowledge for the improved risk assessment of bisphenols.


Subject(s)
Glucuronides , Ovary , Female , Animals , Cattle , Xenobiotics , Benzhydryl Compounds/toxicity
5.
Mol Nutr Food Res ; 67(5): e2200432, 2023 03.
Article in English | MEDLINE | ID: mdl-36647294

ABSTRACT

SCOPE: High red and processed meat consumption is associated with several adverse outcomes such as colorectal cancer and overall global mortality. However, the underlying mechanisms remain debated and need to be elucidated. METHODS AND RESULTS: Urinary untargeted Liquid Chromatography-Mass Spectrometry (LC-MS) metabolomics data from 240 subjects from the French cohort NutriNet-Santé are analyzed. Individuals are matched and divided into three groups according to their consumption of red and processed meat: high red and processed meat consumers, non-red and processed meat consumers, and at random group. Results are supported by a preclinical experiment where rats are fed either a high red meat or a control diet. Microbiota derived metabolites, in particular indoxyl sulfate and cinnamoylglycine, are found impacted by the high red meat diet in both studies, suggesting a modification of microbiota by the high red/processed meat diet. Rat microbiota sequencing analysis strengthens this observation. Although not evidenced in the human study, rat mercapturic acid profile concomitantly reveals an increased lipid peroxidation induced by high red meat diet. CONCLUSION: Novel microbiota metabolites are identified as red meat consumption potential biomarkers, suggesting a deleterious effect, which could partly explain the adverse effects associated with high red and processed meat consumption.


Subject(s)
Microbiota , Red Meat , Humans , Rats , Animals , Diet , Meat , Metabolome
6.
Anal Chem ; 95(5): 2822-2831, 2023 02 07.
Article in English | MEDLINE | ID: mdl-36715352

ABSTRACT

Liquid chromatography-mass spectrometry (LC-MS)-based metabolomics usually combines hydrophilic interaction liquid chromatography (HILIC) and reversed-phase (RP) chromatography to cover a wide range of metabolomes, requiring both significant sample consumption and analysis time for separate workflows. We developed an integrated workflow enabling the coverage of both polar and nonpolar metabolites with only one injection of the sample for each ionization mode using heart-cutting trapping to combine HILIC and RP separations. This approach enables the trapping of some compounds eluted from the first chromatographic dimension for separation later in the second dimension. In our case, we applied heart-cutting to non-retained metabolites in the first dimension. For that purpose, two independent miniaturized one-dimensional HILIC and RP methods were developed by optimizing the chromatographic and ionization conditions using columns with an inner diameter of 1 mm. They were then merged into one two-dimensional micro LC-MS method by optimization of the trapping conditions. Equilibration of the HILIC column during elution on the RP column and vice versa reduced the overall analysis time, and the multidimensionality allows us to avoid signal measurements during the solvent front. To demonstrate the benefits of this approach to metabolomics, it was applied to the analysis of the human plasma standard reference material SRM 1950, enabling the detection of hundreds of metabolites without the significant loss of some of them while requiring an injection volume of only 0.5 µL.


Subject(s)
Chromatography, Reverse-Phase , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Chromatography, Reverse-Phase/methods , Metabolomics/methods , Metabolome , Hydrophobic and Hydrophilic Interactions
7.
Food Chem Toxicol ; 167: 113272, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35803361

ABSTRACT

The toxicity of mycotoxins containing bisfuranoid structures such as aflatoxin B1 (AFB1) depends largely on biotransformation processes. While the genotoxicity and mutagenicity of several bisfuranoid mycotoxins including AFB1 and sterigmatocystin have been linked to in vivo bioactivation of these molecules into reactive epoxide forms, the metabolites of genotoxic and mutagenic AFB1 precursor versicolorin A (VerA) have not yet been characterized. Because this molecule is not available commercially, our strategy was to produce a library of metabolites derived from the biotransformation of in-house purified VerA, following incubation with human liver S9 fractions, in presence of appropriate cofactors. The resulting chromatographic and mass-spectrometric data were used to identify VerA metabolites produced by intestinal cell lines as well as intestinal and liver tissues exposed ex vivo. In this way, we obtained a panel of metabolites suggesting the involvement of phase I (M + O) and phase II (glucuronide and sulfate metabolites) enzymes, the latter of which is implicated in the detoxification process. This first qualitative description of the metabolization products of VerA suggests bioactivation of the molecule into an epoxide form and provides qualitative analytic data to further conduct a precise metabolism study of VerA required for the risk assessment of this emerging mycotoxin.


Subject(s)
Aflatoxin B1 , Aflatoxins , Aflatoxin B1/metabolism , Aflatoxin B1/toxicity , Aflatoxins/toxicity , Anthraquinones , DNA Damage , Epoxy Compounds , Humans , Mutagens/toxicity , Sterigmatocystin/toxicity
8.
Metabolomics ; 18(6): 40, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35699774

ABSTRACT

INTRODUCTION: Accuracy of feature annotation and metabolite identification in biological samples is a key element in metabolomics research. However, the annotation process is often hampered by the lack of spectral reference data in experimental conditions, as well as logistical difficulties in the spectral data management and exchange of annotations between laboratories. OBJECTIVES: To design an open-source infrastructure allowing hosting both nuclear magnetic resonance (NMR) and mass spectra (MS), with an ergonomic Web interface and Web services to support metabolite annotation and laboratory data management. METHODS: We developed the PeakForest infrastructure, an open-source Java tool with automatic programming interfaces that can be deployed locally to organize spectral data for metabolome annotation in laboratories. Standardized operating procedures and formats were included to ensure data quality and interoperability, in line with international recommendations and FAIR principles. RESULTS: PeakForest is able to capture and store experimental spectral MS and NMR metadata as well as collect and display signal annotations. This modular system provides a structured database with inbuilt tools to curate information, browse and reuse spectral information in data treatment. PeakForest offers data formalization and centralization at the laboratory level, facilitating shared spectral data across laboratories and integration into public databases. CONCLUSION: PeakForest is a comprehensive resource which addresses a technical bottleneck, namely large-scale spectral data annotation and metabolite identification for metabolomics laboratories with multiple instruments. PeakForest databases can be used in conjunction with bespoke data analysis pipelines in the Galaxy environment, offering the opportunity to meet the evolving needs of metabolomics research. Developed and tested by the French metabolomics community, PeakForest is freely-available at https://github.com/peakforest .


Subject(s)
Metabolomics , Metadata , Data Curation/methods , Mass Spectrometry/methods , Metabolome , Metabolomics/methods
9.
J Fungi (Basel) ; 7(12)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34947037

ABSTRACT

Dimethyl sulfoxide (DSMO) is a simple molecule widely used because of its great solvating ability, but this solvent also has little-known biological effects, especially on fungi. Aspergillus flavus is a notorious pathogenic fungus which may contaminate a large variety of crops worldwide by producing aflatoxins, endangering at the same time food safety and international trade. The aim of this study was to characterize the effect of DMSO on A. flavus including developmental parameters such as germination and sporulation, as well as its transcriptome profile using high-throughput RNA-sequencing assay and its impact on secondary metabolism (SM). After DMSO exposure, A. flavus displayed depigmented conidia in a dose-dependent manner. The four-day exposition of cultures to two doses of DMSO, chosen on the basis of depigmentation intensity (35 mM "low" and 282 mM "high"), led to no significant impact on fungal growth, germination or sporulation. However, transcriptomic data analysis showed that 4891 genes were differentially regulated in response to DMSO (46% of studied transcripts). A total of 4650 genes were specifically regulated in response to the highest dose of DMSO, while only 19 genes were modulated upon exposure to the lowest dose. Secondary metabolites clusters genes were widely affected by the DMSO, with 91% of clusters impacted at the highest dose. Among these, aflatoxins, cyclopiazonic acid and ustiloxin B clusters were totally under-expressed. The genes belonging to the AFB1 cluster were the most negatively modulated ones, the two doses leading to 63% and 100% inhibition of the AFB1 production, respectively. The SM analysis also showed the disappearance of ustiloxin B and a 10-fold reduction of cyclopiazonic acid level when A. flavus was treated by the higher DMSO dose. In conclusion, the present study showed that DMSO impacted widely A. flavus' transcriptome, including secondary metabolism gene clusters with the aflatoxins at the head of down-regulated ones. The solvent also inhibits conidial pigmentation, which could illustrate common regulatory mechanisms between aflatoxins and fungal pigment pathways. Because of its effect on major metabolites synthesis, DMSO should not be used as solvent especially in studies testing anti-aflatoxinogenic compounds.

10.
Arch Toxicol ; 95(10): 3303-3322, 2021 10.
Article in English | MEDLINE | ID: mdl-34459931

ABSTRACT

As a result of the cosmetics testing ban, safety evaluations of cosmetics ingredients must now be conducted using animal-free methods. A common approach is read across, which is mainly based on structural similarities but can also be conducted using biological endpoints. Here, metabolomics was used to assess biological effects to enable a read across between a candidate cosmetic ingredient, DIV665, only studied using in vitro assays, and a structurally similar reference compound, PA102, previously investigated using traditional in vivo toxicity methods. The (1) cutaneous distribution after topical application, (2) skin metabolism, (3) liver metabolism and (4) effect on the intracellular metabolomic profiles of in vitro skin and hepatic models, SkinEthic®RHE model and HepaRG® cells were investigated. The compounds exhibited similar skin penetration and skin and liver metabolism, with small differences attributed to their physicochemical properties. The effects of both compounds on the metabolome of RHE and HepaRG® cells were similarly small, both in terms of the metabolites modulated and the magnitude of changes. The patterns of metabolome changes did not fit with any known signature relating to a mode of action known to be linked to liver toxicity e.g. modification of the Krebs cycle, urea synthesis and lipid metabolism, were more reflective of transient adaptive responses. Overall, these studies indicate that PA102 is biologically similar to DIV665, allowing read across of safety endpoints, such as in vivo sub-chronic (but not reproduction toxicity) studies, for the former to be applied to DIV665. Based on this, in the absence of animal data (which is prohibited for new chemicals), it could be concluded that DIV665 applied according to the consumer topical use scenario, is similar to PA102, and is predicted to exhibit low local skin and systemic toxicity.


Subject(s)
Cosmetics/toxicity , Liver/drug effects , Skin/drug effects , Animals , Cell Line , Cells, Cultured , Consumer Product Safety , Decanoic Acids/toxicity , Female , Humans , Liver/metabolism , Metabolomics/methods , Skin/metabolism , Swine , Toxicity Tests
11.
Metabolomics ; 17(1): 2, 2021 01 02.
Article in English | MEDLINE | ID: mdl-33389209

ABSTRACT

INTRODUCTION: Because of its ease of collection, urine is one of the most commonly used matrices for metabolomics studies. However, unlike other biofluids, urine exhibits tremendous variability that can introduce confounding inconsistency during result interpretation. Despite many existing techniques to normalize urine samples, there is still no consensus on either which method is most appropriate or how to evaluate these methods. OBJECTIVES: To investigate the impact of several methods and combinations of methods conventionally used in urine metabolomics on the statistical discrimination of two groups in a simple metabolomics study. METHODS: We applied 14 different strategies of normalization to forty urine samples analysed by liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS). To evaluate the impact of these different strategies, we relied on the ability of each method to reduce confounding variability while retaining variability of interest, as well as the predictability of statistical models. RESULTS: Among all tested normalization methods, osmolality-based normalization gave the best results. Moreover, we demonstrated that normalization using a specific dilution prior to the analysis outperformed post-acquisition normalization. We also demonstrated that the combination of various normalization methods does not necessarily improve statistical discrimination. CONCLUSIONS: This study re-emphasized the importance of normalizing urine samples for metabolomics studies. In addition, it appeared that the choice of method had a significant impact on result quality. Consequently, we suggest osmolality-based normalization as the best method for normalizing urine samples. TRIAL REGISTRATION NUMBER: NCT03335644.


Subject(s)
Data Interpretation, Statistical , Metabolomics/methods , Osmolar Concentration , Urinalysis/methods , Body Fluids/metabolism , Chromatography, Liquid , Humans , Liquid Biopsy , Mass Spectrometry , Metabolome , Metabolomics/standards , Urinalysis/standards
12.
Environ Int ; 144: 106010, 2020 11.
Article in English | MEDLINE | ID: mdl-32745781

ABSTRACT

BACKGROUND: We recently demonstrated that chronic dietary exposure to a mixture of pesticides at low-doses induced sexually dimorphic obesogenic and diabetogenic effects in adult mice. Perinatal pesticide exposure may also be a factor in metabolic disease etiology. However, the long-term consequences of perinatal pesticide exposure remain controversial and largely unexplored. OBJECTIVES: Here we assessed how perinatal exposure to the same low-dose pesticide cocktail impacted metabolic homeostasis in adult mice. METHODS: Six pesticides (boscalid, captan, chlopyrifos, thiachloprid, thiophanate, and ziram) were incorporated in food pellets. During the gestation and lactation periods, female (F0) mice were fed either a pesticide-free or a pesticide-enriched diet at doses exposing them to the tolerable daily intake (TDI) level for each compound, using a 1:1 body weight scaling from humans to mice. All male and female offsprings (F1) were then fed the pesticide-free diet until 18 weeks of age, followed by challenge with a pesticide-free high-fat diet (HFD) for 6 weeks. Metabolic parameters, including body weight, food and water consumption, glucose tolerance, and urinary and fecal metabolomes, were assessed over time. At the end of the experiment, we evaluated energetic metabolism and microbiota activity using biochemical assays, gene expression profiling, and 1H NMR-based metabolomics in the liver, urine, and feces. RESULTS: Perinatal pesticide exposure did not affect body weight or energy homeostasis in 6- and 14-week-old mice. As expected, HFD increased body weight and induced metabolic disorders as compared to a low-fat diet. However, HFD-induced metabolic perturbations were similar between mice with and without perinatal pesticide exposure. Interestingly, perinatal pesticide exposure induced time-specific and sex-specific alterations in the urinary and fecal metabolomes of adult mice, suggesting long-lasting changes in gut microbiota. CONCLUSIONS: Perinatal pesticide exposure induced sustained sexually dimorphic perturbations of the urinary and fecal metabolic fingerprints, but did not significantly influence the development of HFD-induced metabolic diseases.


Subject(s)
Gastrointestinal Microbiome , Pesticides , Animals , Diet, High-Fat/adverse effects , Feces , Female , Mice , Mice, Inbred C57BL , Pesticides/toxicity
13.
Anal Chem ; 92(2): 1746-1754, 2020 01 21.
Article in English | MEDLINE | ID: mdl-31854978

ABSTRACT

Among the numerous unknown metabolites representative of our exposure, focusing on toxic compounds should provide more relevant data to link exposure and health. For that purpose, we developed and applied a global method using data independent acquisition (DIA) in mass spectrometry to profile specifically electrophilic compounds originating metabolites. These compounds are most of the time toxic, due to their chemical reactivity toward nucleophilic sites present in biomacromolecules. The main line of cellular defense against these electrophilic molecules is conjugation to glutathione, then metabolization into mercapturic acid conjugates (MACs). Interestingly, MACs display a characteristic neutral loss in MS/MS experiments that makes it possible to detect all the metabolites displaying this characteristic loss, thanks to the DIA mode, and therefore to highlight the corresponding reactive metabolites. As a proof of concept, our workflow was applied to the toxicological issue of the oxidation of dietary polyunsaturated fatty acids, leading in particular to the formation of toxic alkenals, which lead to MACs upon glutathione conjugation and metabolization. By this way, dozens of MACs were detected and identified. Interestingly, multivariate statistical analyses carried out only on extracted HRMS signals of MACs yield a better characterization of the studied groups compared to results obtained from a classic untargeted metabolomics approach.


Subject(s)
Acetylcysteine/metabolism , Aldehydes/metabolism , Acetylcysteine/analysis , Acetylcysteine/urine , Aldehydes/chemistry , Aldehydes/urine , Animals , Male , Metabolomics , Molecular Structure , Multivariate Analysis , Rats , Rats, Inbred F344 , Tandem Mass Spectrometry
14.
Anal Chem ; 91(19): 12191-12202, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31464421

ABSTRACT

The secondary metabolome of Penicillium nordicum is poorly documented despite its frequent detection on contaminated food and its capacity to produce toxic metabolites such as ochratoxin A. To characterize metabolites produced by this fungi, we combined a full stable isotopes labeling with the dereplication of tandem mass spectrometry (MS/MS) data by molecular networking. First, the untargeted metabolomic analysis by high-resolution mass spectrometry of a double stable isotope labeling of P. nordicum enabled the specific detection of its metabolites and the unambiguous determination of their elemental composition. Analyses showed that infection of substrate by P. nordicum lead to the production of at least 92 metabolites and that 69 of them were completely unknown. Then, curated molecular networks of MS/MS data were generated with GNPS and MetGem, specifically on the features of interest, which allowed highlighting 13 fungisporin-related metabolites that had not previously been identified in this fungus and 8 that had never been observed in any fungus. The structures of the unknown compounds, namely, a native fungisporin and seven linear peptides, were characterized by tandem mass spectrometry experiments. The analysis of P. nordicum growing on its natural substrates, i.e. pork ham, turkey ham, and cheese, demonstrated that 10 of the known fungisporin-related metabolites and three of the new metabolites were also synthesized. Thus, the curation of data for molecular networking using a specific detection of metabolites of interest with stable isotopes labeling allowed the discovery of new metabolites produced by the food contaminant P. nordicum.


Subject(s)
Penicillium/metabolism , Tandem Mass Spectrometry/methods , Carbon Isotopes , Cheese/microbiology , Food Microbiology , Isotope Labeling/methods , Molecular Structure , Nitrogen Isotopes , Pork Meat/microbiology , Secondary Metabolism
15.
J Mass Spectrom ; 54(6): 567-582, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31083780

ABSTRACT

Nowadays, high-resolution mass spectrometry is widely used for metabolomic studies. Thanks to its high sensitivity, it enables the detection of a large range of metabolites. In metabolomics, the continuous quest for a metabolite identification as complete and accurate as possible has led during the last decade to an ever increasing development of public MS databases (including LC-MS data) concomitantly with bioinformatic tool expansion. To facilitate the annotation process of MS profiles obtained from biological samples, but also to ease data sharing, exchange, and exploitation, the standardization and harmonization of the way to describe and annotate mass spectra seemed crucial to us. Indeed, under electrospray (ESI) conditions, a single metabolite does not produce a unique ion corresponding to its protonated or deprotonated form but could lead to a complex mixture of signals. These MS signals result from the existence of different natural isotopologues of the same compound and also to the potential formation of adduct ions, homomultimeric and heteromultimeric ions, fragment ions resulting from "prompt" in-source dissociations. As a joint reflection process within the French Infrastructure for Metabolomics and Fluxomics (MetaboHUB) and with the purpose of developing a robust and exchangeable annotated MS database made from pure reference compounds (chemical standards) analysis, it appeared to us that giving the metabolomics community some clues to standardize and unambiguously annotate each MS feature was a prerequisite to data entry and further efficient querying of the mass spectral database. The use of a harmonized notation is also mandatory for interlaboratory MS data exchange. Additionally, thorough description of the variety of MS signals arising from the analysis of a unique metabolite might provide greater confidence on its annotation.


Subject(s)
Data Curation/methods , Databases, Factual/standards , Metabolomics/methods , Spectrometry, Mass, Electrospray Ionization/methods , Chromatography, High Pressure Liquid/methods , Computational Biology , Principal Component Analysis , Tandem Mass Spectrometry/methods
16.
Eur J Mass Spectrom (Chichester) ; 25(3): 278-290, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30545248

ABSTRACT

The stratum corneum, the outermost layer of the epidermis, is the most important skin barrier against exogenous physical and chemical effects, in addition to protecting against dehydration. Ceramides are integral parts of the intercellular lipid lamellae of the stratum corneum and play an important role in the barrier function of mammalian skin. Ceramides are sphingolipids consisting of sphingoid bases linked to fatty acids by an amide bond. Typical sphingoid bases in the skin are composed of dihydrosphingosine, sphingosine, phytosphingosine, and 6-hydroxysphingosine, and the fatty acid acyl chains are composed of non-hydroxy fatty acid, α-hydroxy fatty acid, ω-hydroxy fatty acid, and esterified ω-hydroxy fatty acid. Analytical methods, such as gas chromatography/mass spectrometry, high performance thin layer chromatography with UV detection, and liquid chromatography/mass spectrometry, have been developed for the identification and quantification of ceramides in the stratum corneum. However, only a few publications relate to the mass fragmentation patterns specific to ceramide types to determine the structure of skin ceramides. Moreover, these studies provide very limited structural information and only for some ceramides. Therefore, the aim of our study was to develop a quick and easy method of quantification of ceramides, cholesterol, and free fatty acids by high performance thin layer chromatography with ultraviolet detection. High performance thin layer chromatography with ultraviolet detection was also coupled with mass spectrometry using negative ionization by electrospray and tandem mass spectrometry (MS/MS) for identification of ceramides' structure.


Subject(s)
Chromatography, Thin Layer/methods , Epidermis/chemistry , Lipids/chemistry , Tandem Mass Spectrometry/methods , Adult , Ceramides/chemistry , Female , Humans , Middle Aged , Skin/chemistry , Spectrometry, Mass, Electrospray Ionization/methods
17.
Environ Health Perspect ; 126(6): 067007, 2018 06.
Article in English | MEDLINE | ID: mdl-29950287

ABSTRACT

BACKGROUND: Epidemiological evidence suggests a link between pesticide exposure and the development of metabolic diseases. However, most experimental studies have evaluated the metabolic effects of pesticides using individual molecules, often at nonrelevant doses or in combination with other risk factors such as high-fat diets. OBJECTIVES: We aimed to evaluate, in mice, the metabolic consequences of chronic dietary exposure to a pesticide mixture at nontoxic doses, relevant to consumers' risk assessment. METHODS: A mixture of six pesticides commonly used in France, i.e., boscalid, captan, chlorpyrifos, thiofanate, thiacloprid, and ziram, was incorporated in a standard chow at doses exposing mice to the tolerable daily intake (TDI) of each pesticide. Wild-type (WT) and constitutive androstane receptor-deficient (CAR-/-) male and female mice were exposed for 52 wk. We assessed metabolic parameters [body weight (BW), food and water consumption, glucose tolerance, urinary metabolome] throughout the experiment. At the end of the experiment, we evaluated liver metabolism (histology, transcriptomics, metabolomics, lipidomics) and pesticide detoxification using liquid chromatography-mass spectrometry (LC-MS). RESULTS: Compared to those fed control chow, WT male mice fed pesticide chow had greater BW gain and more adiposity. Moreover, these WT males fed pesticide chow exhibited characteristics of hepatic steatosis and glucose intolerance, which were not observed in those fed control chow. WT exposed female mice exhibited fasting hyperglycemia, higher reduced glutathione (GSH):oxidized glutathione (GSSG) liver ratio and perturbations of gut microbiota-related urinary metabolites compared to WT mice fed control chow. When we performed these experiments on CAR-/- mice, pesticide-exposed CAR-/- males did not exhibit BW gain or changes in glucose metabolism compared to the CAR-/- males fed control chow. Moreover, CAR-/- females fed pesticide chow exhibited pesticide toxicity with higher BWs and mortality rate compared to the CAR-/- females fed control chow. CONCLUSIONS: To our knowledge, we are the first to demonstrate a sexually dimorphic obesogenic and diabetogenic effect of chronic dietary exposure to a common mixture of pesticides at TDI levels, and to provide evidence for a partial role for CAR in an in vivo mouse model. This raises questions about the relevance of TDI for individual pesticides when present in a mixture. https://doi.org/10.1289/EHP2877.


Subject(s)
Fungicides, Industrial/toxicity , Glucose Metabolism Disorders/chemically induced , Insecticides/toxicity , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Animals, Genetically Modified , Body Weight/drug effects , Constitutive Androstane Receptor , Dietary Exposure , Fatty Liver/chemically induced , Female , Glutathione/metabolism , Inactivation, Metabolic , Liver/drug effects , Liver/metabolism , Male , Metabolome/drug effects , Mice , Mice, Inbred C57BL , Sex Factors , Toxicity Tests, Chronic
18.
Toxicol Appl Pharmacol ; 329: 190-201, 2017 08 15.
Article in English | MEDLINE | ID: mdl-28601433

ABSTRACT

In this study, a comprehensive characterization of xenobiotic metabolizing enzymes (XMEs) based on gene expression and enzyme functionality was made in a reconstructed skin epidermal model derived from the outer root sheath (ORS) of hair follicles (ORS-RHE). The ORS-RHE model XME gene profile was consistent with native human skin. Cytochromes P450 (CYPs) consistently reported to be detected in native human skin were also present at the gene level in the ORS-RHE model. The highest Phase I XME gene expression levels were observed for alcohol/aldehyde dehydrogenases and (carboxyl) esterases. The model was responsive to the CYP inducers, 3-methylcholanthrene (3-MC) and ß-naphthoflavone (ßNF) after topical and systemic applications, evident at the gene and enzyme activity level. Phase II XME levels were generally higher than those of Phase I XMEs, the highest levels were GSTs and transferases, including NAT1. The presence of functional CYPs, UGTs and SULTs was confirmed by incubating the models with 7-ethoxycoumarin, testosterone, benzo(a)pyrene and 3-MC, all of which were rapidly metabolized within 24h after topical application. The extent of metabolism was dependent on saturable and non-saturable metabolism by the XMEs and on the residence time within the model. In conclusion, the ORS-RHE model expresses a number of Phase I and II XMEs, some of which may be induced by AhR ligands. Functional XME activities were also demonstrated using systemic or topical application routes, supporting their use in cutaneous metabolism studies. Such a reproducible model will be of interest when evaluating the cutaneous metabolism and potential toxicity of innovative dermo-cosmetic ingredients.


Subject(s)
Cytochrome P-450 Enzyme System/biosynthesis , Hair Follicle/enzymology , Keratinocytes/enzymology , Xenobiotics/metabolism , Basic Helix-Loop-Helix Transcription Factors/agonists , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cells, Cultured , Cytochrome P-450 Enzyme Inducers/pharmacology , Cytochrome P-450 Enzyme System/genetics , Enzyme Induction , Glutathione Transferase/biosynthesis , Glutathione Transferase/genetics , Hair Follicle/cytology , Hair Follicle/drug effects , Humans , Isoenzymes , Keratinocytes/drug effects , Kinetics , Ligands , Metabolic Detoxication, Phase I , Metabolic Detoxication, Phase II , Receptors, Aryl Hydrocarbon/agonists , Receptors, Aryl Hydrocarbon/metabolism , Substrate Specificity , Sulfotransferases/biosynthesis , Sulfotransferases/genetics
19.
Biochem Pharmacol ; 137: 113-124, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28461126

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs), such as benzo[a]pyrene (B[a]P), are widely distributed environmental contaminants exerting toxic effects such as genotoxicity and carcinogenicity, mainly associated with aryl hydrocarbon receptor (AhR) activation and the subsequent induction of cytochromes P-450 (CYP) 1-metabolizing enzymes. We previously reported an up-regulation of AhR expression and activity in primary cultures of human T lymphocyte by a physiological activation. Despite the suggested link between exposure to PAHs and the risk of lymphoma, the potential of activated human T lymphocytes to metabolize AhR exogenous ligands such as B[a]P and produce DNA damage has not been investigated. In the present study, we characterized the genotoxic response of primary activated T lymphocytes to B[a]P. We demonstrated that, following T lymphocyte activation, B[a]P treatment triggers a marked increase in CYP1 expression and activity generating, upon metabolic activation, DNA adducts and double-strand breaks (DSBs) after a 48-h treatment. At this time point, B[a]P also induces a DNA damage response with ataxia telangiectasia mutated kinase activation, thus producing a p53-dependent response and T lymphocyte survival. B[a]P activates DSB repair by mobilizing homologous recombination machinery but also induces gene mutations in activated human T lymphocytes which could consequently drive a cancer process. In conclusion, primary cultures of activated human T lymphocytes represent a good model for studying genotoxic effects of environmental contaminants such as PAHs, and predicting human health issues.


Subject(s)
Benzo(a)pyrene/toxicity , DNA Damage/drug effects , Mutagenesis/drug effects , T-Lymphocytes/drug effects , Cells, Cultured , DNA Damage/physiology , Dose-Response Relationship, Drug , Humans , Leukocytes, Mononuclear/drug effects , Leukocytes, Mononuclear/metabolism , Mutagenesis/physiology , Mutagenicity Tests/methods , T-Lymphocytes/metabolism
20.
Article in English | MEDLINE | ID: mdl-28351740

ABSTRACT

Industrial applications of fungal compounds, coupled with the emergence of fungal threats to natural ecosystems and public health, have increased interest in filamentous fungi. Among all pathogenic fungi, Penicillium verrucosum is one of the most common mold-infecting stored cereals in temperate regions. However, it is estimated that 80% of fungal secondary metabolites remain unknown. To detect new P. verrucosum compounds, an untargeted metabolomic approach was applied to fungus grown on wheat grains labeled with stable isotopes: (i) natural grains (99% 12C); (ii) grains enriched with 97% of 13C; and (iii) grains enriched with 53% of 13C and 97% of 15N. Analyses performed by high-performance liquid chromatography coupled with high-resolution mass spectrometry (HPLC-HRMS) enabled the specific detection of fungal metabolites, and the unambiguous characterization of their chemical formulas. In this way, 98 secondary metabolites were detected and their chemical formulas were determined. Of these, only 18 identifications could be made based on databases, the literature and mass spectrometry fragmentation experiments, with the result that 80 were totally unknown. Molecular networks were generated to analyze these results, leading to the characterization by MSn experiments of a new fungisporin produced by P. verrucosum. More generally, this article provides precise mass spectrometric data about all these compounds for further studies of the Penicillium metabolome.


Subject(s)
Isotope Labeling/methods , Mass Spectrometry/methods , Metabolome , Metabolomics/methods , Penicillium/metabolism , Chromatography, High Pressure Liquid/methods , Penicillium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...