Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
Food Chem ; 422: 136259, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37150115

ABSTRACT

Pulses have been consumed worldwide for over 10 centuries and are currently among the most widely used foods. They are not economically important, but also nutritionally beneficial as they constitute a good source of protein, fibre, vitamins and minerals such as iron, zinc, folate and magnesium. Pulses, but particularly species such as Macrotyloma uniflorum, Phaseolus vulgaris L., Glycine max L. and Vigna umbellate, are essential ingredients of the local diet in the Indian Himalayan Region (IHR). Consuming pulses can have a favourable effect on cardiovascular health as they improve serum lipid profiles, reduce blood pressure, decrease platelet activity, regulate blood glucose and insulin levels, and reduce inflammation. Although pulses also contain anti-nutritional compounds such as phytates, lectins or enzyme inhibitors, their deleterious effects can be lessened by using effective processing and cooking methods. Despite their great potential, however, the use of some pulses is confined to IHR regions. This comprehensive review discusses the state of the art in available knowledge about various types of pulses grown in IHR in terms of chemical and nutritional properties, health effects, accessibility, and agricultural productivity.


Subject(s)
Phaseolus , Vitamins , Diet , Minerals , Iron
3.
Metabolites ; 12(6)2022 Jun 13.
Article in English | MEDLINE | ID: mdl-35736473

ABSTRACT

Indian Himalayan region (IHR) supports a wide diversity of plants and most of them are known for their medicinal value. Humankind has been using medicinal plants since the inception of civilization. Various types of bioactive compounds are found in plants, which are directly and indirectly beneficial for plants as well as humans. These bioactive compounds are highly useful and being used as a strong source of medicines, pharmaceuticals, agrochemicals, food additives, fragrances, and flavoring agents. Apart from this, several plant species contain some toxic compounds that affect the health of many forms of life as well as cause their death. These plants are known as poisonous plants, because of their toxicity to both humans and animals. Therefore, it is necessary to know in what quantity they should be taken so that it does not have a negative impact on health. Recent studies on poisonous plants have raised awareness among people who are at risk of plant toxicity in different parts of the world. The main aim of this review article is to explore the current knowledge about the poisonous plants of the Indian Himalayas along with the importance of these poisonous plants to treat different ailments. The findings of the present review will be helpful to different pharmaceutical industries, the scientific community and researchers around the world.

4.
Heliyon ; 7(8): e07709, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34430728

ABSTRACT

Plant secondary metabolites (PSMs) are plant products that are discontinuously distributed throughout the plant kingdom. These secondary compounds have various chemical groups and are named according to their chemical constituents. For their ability to defend biotic and abiotic stresses they are considered as plants' defensive compounds. These metabolites take part in plant protection from insects, herbivores, and extreme environmental conditions. They are indirectly involved in plants' growth and development. Secondary metabolites are also used by people in the form of medicines, pharmaceuticals, agrochemicals, colors, fragrances, flavorings, food additives, biopesticides, and drugs development. However, the increase in atmospheric temperature by several anthropogenic activities majorly by the combustion of hydrocarbons is a great issue now. On the other hand, climate change leaves an impact on the quality and quantity of plant secondary metabolites. It is measured that several greenhouse gases (GHGs) are present in the atmosphere, like Chlorofluorocarbons (CFCs), nitrous oxides (NOx), Carbon dioxide (CO2), Methane (CH4) and Ozone (O3), etc. CO2, the major greenhouse gas is essential for photosynthesis. On the other hand, CO2 plays a significant role in the up-regulation of atmospheric temperature. Plants produce various types of primary metabolites such as carbohydrates, proteins, fats, membrane lipids, nucleic acids, and chlorophyll as well as a variety of secondary metabolites from photosynthesis. The high temperature in the atmosphere creates heat stress for plants. As a matter of fact many morphological, physiological and biochemical changes occur in the plant. The high temperature invariably elicits the production of several secondary metabolites within plants. Various strategies have been universally documented to improve the production of PSMs. With this objective, the focus of the current review is to further investigate and discuss futuristic scenarios the effect of elevated CO2 and high temperature on PSMs production which may perhaps beneficial for pharmaceutical industries, biotechnology industries, and also in climate change researches.

SELECTION OF CITATIONS
SEARCH DETAIL
...