Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 1782, 2022 02 02.
Article in English | MEDLINE | ID: mdl-35110621

ABSTRACT

Amphibole asbestos is related to lung fibrosis and several types of lung tumors. The disease-triggering mechanisms still challenge our diagnostic capabilities and are still far from being fully understood. The literature focuses primarily on the role and formation of asbestos bodies in lung tissues, but there is a distinct lack of studies on amphibole particles that have been internalized by alveolar epithelial cells (AECs). These internalized particles may directly interact with the cell nucleus and the organelles, exerting a synergistic action with asbestos bodies (AB) from a different location. Here we document the near-atomic- to nano-scale transformations induced by, and taking place within, AECs of three distinct amphiboles (anthophyllite, grunerite, "amosite") with different Fe-content and morphologic features. We show that: (i) an Fe-rich layer is formed on the internalized particles, (ii) particle grain boundaries are transformed abiotically by the internal chemical environment of AECs and/or by a biologically induced mineralization mechanism, (iii) the Fe-rich material produced on the particle surface does not contain large amounts of P, in stark contrast to extracellular ABs, and (iv) the iron in the Fe-rich layer is derived from the particle itself. Internalized particles and ABs follow two distinct formation mechanisms reaching different physicochemical end-states.


Subject(s)
Alveolar Epithelial Cells/metabolism , Asbestos, Amphibole/analysis , Asbestos, Amphibole/metabolism , Iron/metabolism , Lung/metabolism , Nanoparticles/chemistry , Alveolar Epithelial Cells/pathology , Humans , Lung/pathology
2.
Mol Microbiol ; 112(4): 1253-1269, 2019 10.
Article in English | MEDLINE | ID: mdl-31376198

ABSTRACT

Proteins of the aegerolysin family have a high abundance in Fungi. Due to their specific binding to membrane lipids, and their membrane-permeabilization potential in concert with protein partner(s) belonging to a membrane-attack-complex/perforin (MACPF) superfamily, they were proposed as useful tools in different biotechnological and biomedical applications. In this work, we performed functional studies on expression of the genes encoding aegerolysin and MACPF-like proteins in Aspergillus niger. Our results suggest the sporulation process being crucial for strong induction of the expression of all these genes. However, deletion of either of the aegerolysin genes did not influence the growth, development, sporulation efficiency and phenotype of the mutants, indicating that aegerolysins are not key factors in the sporulation process. In all our expression studies we noticed a strong correlation in the expression of one aegerolysin and MACPF-like gene. Aegerolysins were confirmed to be secreted from the fungus. We also showed the specific interaction of a recombinant A. niger aegerolysin with an invertebrate-specific membrane sphingolipid. Moreover, using this protein labelled with mCherry we successfully stained insect cells membranes containing this particular sphingolipid. Our combined results suggest, that aegerolysins in this species, and probably also in other aspergilli, could be involved in defence against predators.


Subject(s)
Complement Membrane Attack Complex/metabolism , Fungal Proteins/metabolism , Hemolysin Proteins/metabolism , Perforin/metabolism , Aspergillus niger/genetics , Aspergillus niger/metabolism , Complement Membrane Attack Complex/genetics , Fungal Proteins/physiology , Gene Expression Regulation, Fungal/genetics , Hemolysin Proteins/physiology , Membrane Proteins/metabolism , Perforin/genetics , Sphingolipids/metabolism , Spores, Fungal/genetics , Spores, Fungal/metabolism
3.
PLoS One ; 11(7): e0159231, 2016.
Article in English | MEDLINE | ID: mdl-27414641

ABSTRACT

The periodontopathogen Aggregatibacter actinomycetemcomitans synthesizes several virulence factors, including cytolethal distending toxin (CDT). The active CDT holoenzyme is an AB-type tripartite genotoxin that affects eukaryotic cells. Subunits CdtA and CdtC (B-components) allow binding and intracellular translocation of the active CdtB (A-component), which elicits nuclear DNA damage. Different strains of A. actinomycetemcomitans have diverse virulence genotypes, which results in varied pathogenic potential and disease progression. Here, we identified an A. actinomycetemcomitans strain isolated from two patients with advance chronic periodontitis that has a regular cdtABC operon, which, however, codes for a unique, shorter, variant of the CdtB subunit. We describe the characteristics of this CdtBΔ116-188, which lacks the intact nuclear localisation signal and the catalytic histidine 160. We show that the A. actinomycetemcomitans DO15 isolate secretes CdtBΔ116-188, and that this subunit cannot form a holotoxin and is also not genotoxic if expressed ectopically in HeLa cells. Furthermore, the A. actinomycetemcomitans DO15 isolate is not toxic, nor does it induce cellular distention upon infection of co-cultivated HeLa cells. Biological significance of this deletion in the cdtB remains to be explained.


Subject(s)
Aggregatibacter actinomycetemcomitans/genetics , Aggregatibacter actinomycetemcomitans/pathogenicity , Bacterial Toxins/genetics , Adult , Aggregatibacter actinomycetemcomitans/isolation & purification , Amino Acid Sequence , Bacterial Toxins/chemistry , Bacterial Toxins/toxicity , Chronic Periodontitis/etiology , Chronic Periodontitis/microbiology , Conserved Sequence , Genes, Bacterial , Genetic Variation , HeLa Cells , Histidine/chemistry , Humans , Jurkat Cells , Models, Molecular , Operon , Protein Conformation , Sequence Deletion , Virulence/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...