Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
2.
Heliyon ; 9(7): e17668, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37483748

ABSTRACT

The goal of this research is to investigate the effects of Ohmic heating, heat generation, and viscous dissipative flow on magneto (MHD) boundary-layer heat transmission flowing of Jeffrey nanofluid across a stretchable surface using the Koo-Kleinstreuer-Li (KKL) model. Engine oil serves as the primary fluid and is suspended with copper oxide nanomolecules. The governing equations that regulate the flowing and heat transmission fields are partial-differential equations (PDEs) that are then converted to a model of non-linear ordinary differential equations (ODEs) via similarity transformation. The resultant ODEs are numerically resolved using a Keller box technique via MATLAB software that is suggested. Diagrams and tables are used to express the effects of various normal liquids, nanomolecule sizes, magneto parameters, Prandtl, Deborah, and Eckert numbers on the velocity field and temperature field. The outcomes display that the copper oxide-engine oil nanofluid has a lower velocity, drag force, and Nusselt number than the plain liquid, although the introduction of nanoparticles raises the heat. The heat transference rate is reduced by Eckert number, size of nanomolecules, and magneto parameter rising. Whilst, Deborah number is shown to enhance both the drag-force factor and the heat transfer rate. Furthermore, the discoveries reported are advantageous to upgrading incandescent lighting bulbs, heating, and cooling equipment, filament-generating light, energy generation, multiple heating devices, and other similar devices.

3.
Heliyon ; 9(7): e17756, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37449188

ABSTRACT

Vortices capture the attention of every scientist (as soon as they come into existence) while studying any flow problem because of their significance in comprehending fluid mixing and mass transport processes. A vortex is indeed a physical phenomenon that happens when a liquid or a gas flow in a circular motion. They are generated due to the velocity difference and may be seen in hurricanes, air moving across the plane wing, tornadoes, etc. The study of vortices is important for understanding various natural phenomena in different settings. This work explores the complex dynamics of the Lorentz force that drives the rotation of nanostructures and the emergence of intricate vortex patterns in a hybrid fluid with Fe3O4-Cu nanoparticles. The hybrid nanofluid is modeled as a single-phase fluid, and the partial differential equations (PDEs) that govern its behavior are solved numerically. This work also introduces a novel analysis that enables us to visualize the flow lines and isotherms around the magnetic strips in the flow domain. The Lorentz force confined to the strips causes the spinning of hybrid nanoparticles, resulting in complex vortex structures in the flow domain. The results indicate that the magnetic field lowers the Nusselt number by 34% while raising the skin friction by 9%. The Reynolds number amplifies the influence of the localized magnetic field on the flow dynamics. Lastly, the nano-scaled structures in the flow enhance the Nusselt number significantly while having a minor effect on the skin friction factor.

7.
Sci Rep ; 12(1): 21273, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36481845

ABSTRACT

For heating, ventilation or air conditioning purposes in massive multistory building constructions, ducts are a common choice for air supply, return, or exhaust. Rapid population expansion, particularly in industrially concentrated areas, has given rise to a tradition of erecting high-rise buildings in which contaminated air is removed by making use of vertical ducts. For satisfying the enormous energy requirements of such structures, high voltage wires are used which are typically positioned near the ventilation ducts. This leads to a consequent motivation of studying the interaction of magnetic field (MF) around such wires with the flow in a duct, caused by vacuum pump or exhaust fan etc. Therefore, the objective of this work is to better understand how the established (thermally and hydrodynamically) movement in a perpendicular square duct interacts with the MF formed by neighboring current-carrying wires. A constant pressure gradient drives the flow under the condition of uniform heat flux across the unit axial length, with a fixed temperature on the duct periphery. After incorporating the flow assumptions and dimensionless variables, the governing equations are numerically solved by incorporating a finite volume approach. As an exclusive finding of the study, we have noted that MF caused by the wires tends to balance the flow reversal due to high Raleigh number. The MF, in this sense, acts as a balancing agent for the buoyancy effects, in the laminar flow regime.

8.
Sci Rep ; 12(1): 18769, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335165

ABSTRACT

The purpose of this research was to estimate the thermal characteristics of tri-HNFs by investigating the impacts of ternary nanoparticles on heat transfer (HT) and fluid flow. The employment of flow-describing equations in the presence of thermal radiation, heat dissipation, and Hall current has been examined. Aluminum oxide (Al2O3), copper oxide (CuO), silver (Ag), and water (H2O) nanomolecules make up the ternary HNFs under study. The physical situation was modelled using boundary layer analysis, which generates partial differential equations for a variety of essential physical factors (PDEs). Assuming that a spinning disk is what causes the flow; the rheology of the flow is enlarged and calculated in a rotating frame. Before determining the solution, the produced PDEs were transformed into matching ODEs using the second order convergent technique (SOCT) also known as Keller Box method. Due to an increase in the implicated influencing elements, several significant physical effects have been observed and documented. For resembling the resolution of nonlinear system issues come across in rolling fluid and other computational physics fields.

9.
Sci Rep ; 12(1): 18838, 2022 Nov 06.
Article in English | MEDLINE | ID: mdl-36336701

ABSTRACT

The second iteration of the optimal homotopy asymptotic technique (OHAM-2) has been protracted to fractional order partial differential equations in this work for the first time (FPDEs). Without any transformation, the suggested approach can be used to solve fractional-order nonlinear Zakharov-Kuznetsov equations. The Caputo notion of the fractional-order derivative, whose values fall within the closed interval [0, 1], has been taken into consideration. The method's appeal is that it provides an approximate solution after just one iteration. The suggested method's numerical findings have been contrasted with those of the variational iteration method, residual power series method, and perturbation iteration method. Through tables and graphs, the proposed method's effectiveness and dependability are demonstrated.

10.
Sci Rep ; 12(1): 18406, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36319834

ABSTRACT

The objective of this article is to model and analyze unsteady squeezing flow of fractional MHD Casson fluid through a porous channel. Casson fluid model is significant in understanding the properties of non-Newtonian fluids such as blood flows, printing inks, sauces and toothpaste etc. This study provides important results as unsteady flow of Casson fluid in fractional sense with aforementioned effects has not been captured in existing literature. After applying similarity transformations along with fractional calculus a highly non-linear fractional-order differential equation is obtained. Modeled equation is then solved along with no-slip boundary conditions through a hybrid of Laplace transform with homotopy perturbation algorithm. For validity purposes, solution and errors at various values in fractional domain are compared with existing results. LHPM results are better in terms of accuracy than other available results in literature. Effects of fractional parameter on the velocity profile, skin friction and behaviors of involved fluid parameters is the focal point of this study. Comprehensive, quantitative and graphical analysis is performed for investigating the effects of pertinent fluid parameters on the velocity profile and skin friction. Analysis revealed that fractional parameter depicts similar effect in case of positive and negative squeeze number. Also, skin friction decreases with an increasing fractional parameter. Moreover, in fractional environment Casson parameter has shown similar effect on the velocity profile in case of positive and negative squeeze number.

11.
Sci Rep ; 12(1): 18462, 2022 11 02.
Article in English | MEDLINE | ID: mdl-36323793

ABSTRACT

The current study investigates different methods to minimize the drag coefficient (CD) without ignoring the safety factor related to the stability of a vehicle, i.e., the lift coefficient (CL). The study was carried out by employing an SUV car analyzed numerically using one of the CFD software, Ansys. Four different models such as realizable k-ε, standard k-ω, shear stress transport k-ω, and Reynolds stress model (RSM). The considered models have been validated with experimental data and found in good agreement. The considered inlet velocity varies from 28 to 40 m/s, the results showed that the drag coefficient and the stability are both improved by applying a modification on the roof of the considered car.


Subject(s)
Automobiles , Software , Stress, Mechanical
12.
Sci Rep ; 12(1): 18666, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36333418

ABSTRACT

The main feature of the current investigation is to analyze the magnetohydrodynamic mixed convection flow of Cross fluid. Flow is due to a movable thin needle with Soret and Dufour effect. Heat generation/absorption and nonlinear heat radiation are used in the energy equation. Characteristics of the chemical reaction and thermal activation are given special attention. Appropriate variables are introduced for the transformation of partial differential equations to ordinary differential equations. With the assistance of Runge-Kutta Fehlberg's fourth- fifth-order method with the shooting technique, we determined the prominent result numerically. The prominent examined parameters range is velocity and temperature ratios, heat generation, Dufour, Hartmann, Schmidt numbers ([Formula: see text]), needle thickness ([Formula: see text]), radiative parameter ([Formula: see text]), and Weissenberg number ([Formula: see text]), respectively. Graphs for velocity, thermal, concentration, Skin friction coefficient, and heat and mass transport rates are displayed and analyzed for physical parameters. A similar observation of mixed convection and needle thickness parameter is seen on the velocity field. Temperature and heat transfer rate are reverse behavior in the frame of the Dufour effect. Moreover, an enhancement in chemical reaction shows decay to the concentration field.

13.
Sci Rep ; 12(1): 20272, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36434018

ABSTRACT

The present study proposes aerodynamically optimized exterior designs of a sport utility vehicle using computational fluid dynamics analysis based on steady-state Reynolds-averaged Navier-Stokes turbulence models. To achieve an optimal design, modifications of the outer shape and adding some aerodynamic devices are investigated. This study focuses on modifying this vehicle model's upper and front parts. At the same time, the rear diffuser and spare tire on the back door as a fairing are used as aerodynamic devices for improving streamlines. All these modifications and add-on devices are simulated individually or in combination to achieve the best exterior design. A variety of Reynolds numbers are used for determining the optimization variables. Tetrahedral cells are used throughout the global domain because of the sharp edges in the geometry of the Discovery car model. At the same time, prism cells around car surfaces are adopted to improve the accuracy of the results. A good agreement between the numerical drag coefficient in the present study for the baseline models and the experimental data has been achieved. Changes in the drag and lift coefficients are calculated for all models. It is clear from the numerical results that the use of combined modifications and add-on devices has a significant effect in improving the overall aerodynamic behavior. As a result, the drag coefficient for the optimal design of the Discovery 4th generation is reduced from 0.4 to 0.352 by about 12% compared to the benchmark. Simultaneously, the lift coefficient is 0.037 for optimal design, and it is an acceptable value. It is found that combining all optimal modified configurations can improve both CD and CL simultaneously.

14.
Sci Rep ; 12(1): 19817, 2022 Nov 17.
Article in English | MEDLINE | ID: mdl-36396776

ABSTRACT

Solar radiation, which is emitted by the sun, is required to properly operate photovoltaic cells and solar water pumps (SWP). A parabolic trough surface collector (PTSC) installation model was created to investigate the efficacy of SWP. The thermal transfer performance in SWP is evaluated thru the presence of warmth radiation and heat cause besides viscid dissipation. This evaluation is performed by measuring the thermal transmission proportion of the selected warmth transmission liquid in the PTSC, known as a hybrid nano-fluid. Entropy analysis of Oldroyd-B hybrid nano-fluid via modified Buongiorno's model was also tested. The functions of regulating parameters are quantitatively observed by using the Keller-box approach in MATLAB coding. Short terms define various parameters for tables in velocity, shear pressure and temperature, gravity, and Nusselt numbers. In the condition of thermal radiation and thermal conductivity at room temperature, the competence of SWP is proven to be enhanced. Unlike basic nano-fluids, hybrid nano-fluids are an excellent source of heat transfer. Additionally, with at least 22.56% and 35.01% magnitude, the thermal efficiency of AA7075-Ti-6Al-4 V/EO is higher than AA7075-EO.

15.
Sci Rep ; 12(1): 19681, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36385257

ABSTRACT

In the current study, a vertical, 3D-heated plate is used to replicate the generation of heat energy and concentration into Prandtl liquid. We discuss how Dufour and Soret theories relate to the equations for concentration and energy. In order to see how effectively particles, interact with heat and a solvent, hybrid nanoparticles are used. It does away with the phenomena of viscous dissipation and changing magnetic fields. The motivation behind the developed study is to optimize solvent and heat storage uses in the biological and industrial domains. This article's major goal is to explore the aspects of thermal energy and mass transfer that influence how nanoparticles, hybrid nanoparticles, and 3D melting surface sheets behave. Variable thermal efficiency and variable mass transfer are combined. The system of generated PDEs (difference equations) includes the concentration, velocity, and heat energy equations. The numerical calculations are done for Silver (Ag), Molybdenum Disulfide (MoS2) nanoparticles with Ethylene glycol (C2H6O2) as the base fluid using a boundary layer approach to the mathematical formulation. The system of ODEs is formulated through transformations in order to find a solution. A Galerkin finite element algorithm (G-FEA) is adopted to analyze various aspects versus different parameters. It has been found that motion into hybrid nanoparticles is reduced by motion into nanoparticles. Additionally, differences in heat energy and solvent particle sizes are associated with modifications in magnetic, Dufour, Eckert, and Soret numbers. In contrast to hybrid nanostructures, the output of thermal energy is usually observed to be substantially higher. The magnetic field parameter decreases the particle velocity. In contradiction to the Eckert number, bouncy parameter, and magnetic parameter set values, the maximum quantity of heat energy is obtained. variable thermal conductivity's function. The 3D heated vertical surface convective heat transfer of nanofluids and hybrid nanofluids under the impact of a heat source, thermal radiation, and viscous dissipation has not yet been studied, as far as the authors are aware.

16.
Micromachines (Basel) ; 13(11)2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36363926

ABSTRACT

In a cylindrical cavity, the convection and entropy of the hybrid nanofluid were studied. We have introduced a rectangular fin inside the cylinder; the fin temperature is at Th. The right waving wall is cooled to Tc. The upper and lower walls are insulated. This study contains the induction of a constant magnetic field. The Galerkin finite element method (GFEM) is utilized to treat the controlling equations obtained by giving Rayleigh number values between Ra (103-106) and Hartmann number ratio Ha (0, 25, 50, 100) and Darcy ranging between Da (10-2-10-5) and the porosity ratio is ε (0.2, 0.4, 0.6, 0.8), and the size of the nanoparticles is ϕ (0.02, 0.04, 0.06, 0.08). The range is essential for controlling both fluid flow and the heat transport rate for normal convection. The outcomes show how Da affects entropy and leads to a decline in entropy development. The dynamic and Nusselt mean diverge in a straight line. The domain acts in opposition to the magnetic force while flowing. Highest entropy-forming situations were found in higher amounts of Ra, Da, and initial values of Ha. Parameters like additive nanoparticles (ϕ) and porosity (ε) exert diagonal dominant trends with their improving values.

17.
Sci Rep ; 12(1): 20692, 2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36450738

ABSTRACT

The flow of a fluid across a revolving disc has several technical and industrial uses. Examples of rotating disc flows include centrifugal pumps, viscometers, rotors, fans, turbines, and spinning discs. An important technology with implications for numerous treatments utilized in numerous sectors is the use of hybrid nanofluids (HNFs) to accelerate current advancements. Through investigation of ternary nanoparticle impacts on heat transfer (HT) and liquid movement, the thermal properties of tri-HNFs were to be ascertained in this study. Hall current, thermal radiation, and heat dissipation have all been studied in relation to the use of flow-describing equations. The ternary HNFs under research are composed of the nanomolecules aluminum oxide (Al2O3), copper oxide (CuO), silver (Ag), and water (H2O). For a number of significant physical characteristics, the physical situation is represented utilizing the boundary layer investigation, which produces partial differential equations (PDEs). The rheology of the movement is extended and computed in a revolving setting under the assumption that the movement is caused by a rotatingfloppy. Before the solution was found using the finite difference method, complicated generated PDEs were transformed into corresponding ODEs (Keller Box method). A rise in the implicated influencing factors has numerous notable physical impacts that have been seen and recorded. The Keller Box method (KBM) approach is also delivered for simulating the determination of nonlinear system problems faced in developing liquid and supplementary algebraic dynamics domains. The rate of entropy formation rises as the magnetic field parameter and radiation parameter increase. Entropy production rate decreases as the Brinkman number and Hall current parameter become more enriched. The thermal efficiency of ternary HNFs compared to conventional HNFs losses to a low of 4.8% and peaks to 5.2%.

18.
Sci Rep ; 12(1): 20597, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36446992

ABSTRACT

The formation of entropy in a mixed convection Casson nanofluid model with Arhenius activation energy is examined in this paper using magnetohydrodynamics (MHD). The expanding sheet, whose function of sheet velocity is nonlinear, confines the Casson nanofluid. The final equations, which are obtained from the first mathematical formulations, are solved using the MATLAB built-in solver bvp4c. Utilizing similarity conversion, ODEs are converted in their ultimate form. A number of graphs and tabulations are also provided to show the effects of important flow parameters on the results distribution. Slip parameter was shown to increase fluid temperature and decrease entropy formation. On the production of entropy, the Brinkman number and concentration gradient have opposing effects. In the presence of nanoparticles, the Eckert number effect's augmentation of fluid temperature is more significant. Furthermore, a satisfactory agreement is reached when the findings of the current study are compared to those of studies that have been published in the past.

19.
Sci Rep ; 12(1): 20548, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36447004

ABSTRACT

This research aims to establish the MHD radiating convective nanofluid flow properties with the viscous dissipation across an exponentially accelerating vertical plate. As the plate accelerates, its temperature progressively increases. There are two separate types of water-based nanofluids that include copper ([Formula: see text]) and titanium dioxide ([Formula: see text]) nanoparticles, respectively. The most crucial aspect of this investigation is finding a closed-form solution to a nonlinear coupled partial differential equations scheme. Galerkin finite element method (G-FEM) is used to figure out the initial managing equations. Utilizing graphs, the effect of the flow phenomenon's contributing variables as well as the influence of other factors is determined and depicted. In the part dedicated to the findings and discussion, the properties of these emergent parameters are described in more depth. Nonetheless, the thermal radiation and heat sink factors increase the thermal profile. In addition, the greater density of the copper nanoparticles cause the nanoparticle volume fraction to lessen the velocity delineation.

20.
Sci Rep ; 12(1): 17337, 2022 Oct 15.
Article in English | MEDLINE | ID: mdl-36243832

ABSTRACT

Researchers across the world have tried to explore the impact of non-Newtonian liquid flowing via an extendable surface with the inclusion of various effects due to its industrial and engineering applications like polymer production, paper production, filament extrusion from a dye, etc. This study investigates the behavior of stagnation point flow of Carreau liquid attached with inclined magnetic effect and spectral relaxation approach is utilized here for the numerical outcome. In this study, a few other vital features are attached like the quadratic multiple regression model for Nusselt number evaluation, passive control of nanoparticles, viscus heating thermophoresis, Brownian motion, and mixed convection, etc. Velocity disbursement visibility is analyzed by placing an inclined magnetic field. Physical model generates collection of partial differential equations (PDEs) and these PDEs are moved into ordinary differential equations by a similarity transformations scheme. Further for numerical process, spectral relaxation method is used. Growth in K causes a reduction in velocity because this parameter K creates the impedance to flowing resulting in confines the movement of liquid in restricted the plate. Direct relation is found between [Formula: see text] and the energy file. In the case of S > 1, physically it is a representation of Joule and viscous dissipations. This article is novel in its sense that the influence of oblique magnetic force and second order velocity slippage on Carreau nano liquid and its numerical computation with help of the spectral relaxation method has never been done before. Furthermore, the quadratic multiple regression model has been employed to find the heat transition rate in the status of the Nusselt number.

SELECTION OF CITATIONS
SEARCH DETAIL
...