Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Photochem Photobiol Sci ; 23(2): 245-256, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38105417

ABSTRACT

In photocatalytic removal of organic pollutants, adsorption and degradation are two important processes that take place. Various instrumental techniques and trapping experiments have been used to identify the reactive species and the mechanism of photodegradation. The present work focuses on investigating the mechanism of photo-induced degradation from the comparative characterization of fresh and used samples, isotherm models, competitive adsorption, and desorption studies of pure and Ag+-modified TiO2 NPs. The comparative characterizations of fresh and used NPs were carried out with FT-IR, EDX, and XRF analyses after methylene blue (MB) degradation. The Ag+ doped TiO2 used in this study was fabricated using simple impregnation technique. The prepared NPs were characterized using techniques including XPS, XRD, SEM/EDX, XRF, UV-DRS, and pH point-zero charge analyses (pHPZC). The Ag+-modified TiO2 NPs showed improved efficiency compared to pure TiO2 NPs using normal compact fluorescent light (CFL). The Langmuir and Freundlich isotherm models were applied to test the adsorption behavior on the surface photocatalysts. The investigational data finest fitted to the Langmuir isotherms model compared to Freundlich model, suggesting the homogeneous monolayer adsorption followed by degradations. The competitive removal of MB in the presence of a photo-generated electrons trapper (Cd2+) was enhanced almost 3-folds (115 mg/L) compared to the removal from a single MB solution (40 mg/L). The characterization of the used samples as well as adsorption in the dark and negligible desorption of used samples support the involvement of the proposed photo-induced degradation mechanism.

2.
Sci Rep ; 13(1): 11282, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37438448

ABSTRACT

Biomass waste streams are a possible feedstock for a range of eco-friendly products and a crucial alternative energy source for achieving carbon neutrality; therefore, the efficient management of biomass waste has taken on a greater significance in recent years. Due to its well-comparable physic-chemical properties with fossil diesel, biodiesel is a potential substitute for fossil fuel. This study aimed to synthesize biodiesel from the widely available non-edible seed oil of Sisymbrium irio L. (a member of the Brassicaceae family) via a transesterification procedure over a homemade TiO2 catalyst. At 1:16 oil to methanol ratio, 93% biodiesel yield was obtained over 20 mg catalyst at 60 °C and 60 min. The ASTM methods were used to analyze the fuel properties. The quantitative and qualitative analysis was performed by FT-IR, GC-MS, and NMR spectroscopy. GC-MS study confirms 16 different types of fatty acids of methyl esters. FT-IR analysis showed important peaks that confirm the successful occurrence of biodiesel. 1H-NMR and 13C-NMR showed important peaks for converting triglycerides into corresponding FAMEs. The acid value (0.42 mg KOH/mg/kg), flash point (106 °C), and water content (0.034) of biodiesel are below the specified limit of ASTM D6751 whereas kinetic viscosity (3.72 mm2/s), density (0.874 kg/L), cloud point (- 4.3 °C) and pour point (- 9.6 °C) and high heating value (41.62 MJ/kg) fall within the specified range of ASTM D6751 test limit. The Unsaturation degree and oxidative stability of biodiesel are above ASTM D6751 test limit. The physic-chemical properties of the SIB confirm that it is eco-friendly fuel and a competitive source for manufacturing biodiesel on a commercial scale. Furthermore, the SIB is engine friendly and has good fuel efficacy.


Subject(s)
Biofuels , Brassicaceae , Biomass , Catalysis , Esters/chemistry , Fatty Acids/chemistry , Triglycerides/chemistry
3.
Biology (Basel) ; 11(11)2022 Oct 27.
Article in English | MEDLINE | ID: mdl-36358279

ABSTRACT

Medicinal plants are utilized around the globe for the treatment of a wide range of ailments. This study is an attempt to document the utilization of medicinal plants across the four different cultural groups residing in the rural and remote villages of the northern districts of the Union territory of Jammu and Kashmir, India. To gather information related to medicinal plants and health care practices among the local folk, field surveys were conducted from February 2018 to May 2021. The ethnomedicinal information was gathered through semi-structured interviews and group discussions. During the study, a total of 109 plant species belonging to 35 families were recorded as commonly utilized by the local population, with Asteraceae reported as the dominant family. The most common growth form was herbs, with a percentage contribution of 86%. Leaves (38%) were the most commonly used plant part for the preparation of traditional remedies, and most of the remedies were prepared as paste and applied topically. The highest use value of 0.30 was reported for Capsella bursa-pastoris. Greater similarity (14% species) in the usage of plants was shown by Bakerwal, Gujjar, and Pahadi ethnic groups, whereas the least similarity (1%) was observed between Bakerwal and Kashmiri ethnic groups. Based on the results obtained in the present study, further phytochemical and pharmacological analysis of plants is recommended to confirm the efficacy and safety of the remedies used and to possibly elucidate candidates for the development of new drugs.

4.
Biology (Basel) ; 11(3)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35336828

ABSTRACT

Traditional diets exist in all cultures and geographic regions, and they often represent healthy eating options. Traditional culinary preparations have, however, often undergone profound change, even in the isolated Himalayan region. Therefore, we adapted methods to identify traditional plant foraging activities to better understand their significance in food system sustainability, as well as to promote innovative local gastronomies. Information on wild food and foraging practices was gathered from varied ethnic groups such as Kashmiri, Gujjars, Pahari, Dogra, Bakarwal, Balti, Beda and Brokpa through interviews (n = 716) and group discussions (n = 67) in four bio-geographic regions of the Jammu and Kashmir Himalayas (J&KH). The data were subjected to ordination techniques (Principal Component Analysis) via R software Ver. 4.0.0. We documented 209 food species, of which 73% were plants and 27% animals, used by the inhabitants of four bio-geographic regions of J&KH. The highest number of food plant species was recorded in Indian Kashmir, followed by Jammu, Azad Kashmir and Ladakh (81, 65, 60 and 27 species, respectively), and the maximum number of animal species was reported in Indian Kashmir, followed by Azad Kashmir, Ladakh and Jammu (33, 21, 19 and 17 species, respectively). The Azad Kashmir and Indian Kashmir regions showed greater similarity, whereas the least overlap was observed between Kashmir and Ladakh. The PCA showed considerable variation between different regions, and specific groups of species were more related to one specific region than others. The reported uses of Abies pindrow, Acacia modesta, Bergenia ciliata, Bergenia stracheyi and Juglans regia among plants, and Jynx torquilla, Streptopelia orientalis and Tadorna ferruginea among animals, are novel for the gastronomy of this part of the Himalayan region. We also recorded for the first time from this region seven unique food preparations of wild animals. This study documented extensive traditional knowledge on the usage of wild species, and is the first scientific description of wild food species and their vernacular names in the Western Himalayas, Jammu and Kashmir. Our findings can contribute significantly to combating food insecurity by revitalizing and reconsidering the rich bio-cultural food heritage around which local traditional communities have developed their food systems.

5.
Article in English | MEDLINE | ID: mdl-33014988

ABSTRACT

This study is reporting the biofuel synthesis and characterization from the novel non-edible feedstock cocklebur seeds oil. The Cocklebur crop seeds oil was studied as a potential source for biofuel production based on the chemical, structural and fuel properties analysis. The oil expression and FFAs content in cocklebur crop was reported 37.2% and 0.47 gram KOH/g, using soxhlet apparatus and acid base titration method, respectively. The maximum conversion and yield of the cocklebur crop seeds non-edible oil to biofuel was pursued 93.33%, using transesterification process. The optimum protocol for maximum conversion yield was adjusted: 1:7 oil-methanol molar ratios, ZnO nano-particle concentration 0.2 gm (w/w), reaction temperature 60°C, and reaction time 45 min, respectively. ZnO nano-particle was prepared by a modified sol-gel method, using gelatin and the particle was XRD, TEM, XPS, and UV-vis spectroscopies. Qualitatively, the cocklebur crop synthesized biofuel was quantified and structurally characterized by GC/MS, FT-IR, NMR, and AAS spectroscopies. Quantitatively, the fuel properties of cocklebur crop biofuel was analyzed and compared with the international ASTM and EN standards.

SELECTION OF CITATIONS
SEARCH DETAIL
...