Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Ethnopharmacol ; 331: 118351, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38759763

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Momordica dioica Roxb. ex Willd. (M. dioica Roxb.) a nutritious and therapeutic property rich crop of Cucurbitaceae plant family. In various folklore medicine including Ayurveda fruits are used to treat several metabolic related disorders i.e., hyperglycemia, hyperlipidemia, diabetes, obesity etc. Furthermore, traditionally it is used to treat fever, inflammation, ulcer, skin diseases, haemorrhoids, hypertension and also employed as cardioprotective, hepatoprotective, analgesic, diuretic. AIM OF THE STUDY: This study focuses to explore the therapeutic potential of Momordica dioica Roxb. ex Willd. through in-vitro and in-silico approach for managing hyperlipidemia, hyperglycemia and related metabolic disorders along with its phytochemical profiling for quality evaluation and validation of traditional claim. MATERIALS AND METHODS: The present study was carried out on hydroalcohol extract of dried leaf and fruit of Momordica dioica. In-vitro antioxidant potential using DPPH and Nitric oxide scavenging assay along with in-vitro enzyme inhibitory potential against α-amylase, α-glucosidase, and pancreatic lipase enzymes was studied. The bioactive metabolites were identified from the most potent bioactive extract by analysis with LC-QTOF-MS and also studied their role to lessen the metabolic related disorder through in-silico approaches. RESULTS: The results confirmed that the fruit extract is more active to possess antioxidant and prominent enzyme inhibition potential compared to the leaf. Sixteen identified metabolites in M. dioica Roxb. fruits may be responsible for the therapeutic potential related to metabolic related disorder. The in-silico study of the identified phytomolecules against α-amylase, α-glucosidase and pancreatic lipase showed significant docking scores ranging from -9.8 to -5.5, -8.3 to -4.8 and -8.3 to -6 respectively. CONCLUSION: The current study illustrated that M. dioica Roxb., a traditionally important plant is potential against metabolic related disorders. Phytocomponents present in the fruit extract may be responsible for antioxidant as well as the enzymes' inhibitory potential. Thus, fruits of M. dioica Roxb. will be useful as alternative therapeutics for treatment of hyperlipidemia, hyperglycemia and related metabolic disorders.


Subject(s)
Antioxidants , Fruit , Molecular Docking Simulation , Plant Extracts , Plant Extracts/pharmacology , Plant Extracts/chemistry , Plant Extracts/therapeutic use , Antioxidants/pharmacology , Antioxidants/chemistry , Fruit/chemistry , Phytochemicals/pharmacology , Phytochemicals/analysis , Phytochemicals/chemistry , Phytochemicals/therapeutic use , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Metabolic Diseases/drug therapy , Plant Leaves/chemistry , alpha-Glucosidases/metabolism , Momordica/chemistry , Lipase/antagonists & inhibitors , Lipase/metabolism , Glycoside Hydrolase Inhibitors/pharmacology
2.
J Pharm Pharmacol ; 76(7): 798-812, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38546509

ABSTRACT

INTRODUCTION: The Bruguiera cylindrica L. is a mangrove plant that is typically found in coastal areas of Asia, including India. It has been known for its medicinal properties, which have been utilized for generations. For example, in Thailand, it has been used to treat wounds and diarrhoea, while in India, it has been effective in addressing diabetes, ulcers, and other health issues. This particular study sought to investigate the potential of B. cylindrica bark extract in reducing the symptoms of diabetes in rats. METHODS: In this study, we examined the potential of B. cylindrica bark extract as an inhibitor of α-amylase and α-glucosidase enzymes in vitro. We also evaluated the effects of the extract and Metformin on rats fed high-fat diets and measured their lipid profiles and biochemical parameters. Furthermore, we conducted a network pharmacology analysis to identify proteins and pathways involved in the amelioration of diabetes. RESULTS: Through metabolite profiling, we identified 58 compounds in B. cylindrica hydroalcoholic extract. These compounds include alkaloids, phenolics, flavonoids, and fatty acids. The extract was found to have a dose-dependent inhibition activity against α-amylase and α-glucosidase, with IC50 values similar to acarbose. In rats, oral administration of 200-400 mg/kg of B. cylindrica led to reduced blood glucose levels and normalized serum biochemical parameters. CONCLUSIONS: Bruguiera cylindrica bark may reduce blood sugar levels in rats with diabetes. The study found metabolites that interact with protein targets associated with different types of diabetes.


Subject(s)
Diabetes Mellitus, Experimental , Hypoglycemic Agents , Network Pharmacology , Plant Bark , Plant Extracts , alpha-Amylases , Animals , Plant Extracts/pharmacology , Hypoglycemic Agents/pharmacology , Rats , Male , alpha-Amylases/antagonists & inhibitors , alpha-Amylases/metabolism , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/metabolism , Plant Bark/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/metabolism , Diet, High-Fat , Metformin/pharmacology , Blood Glucose/drug effects , Blood Glucose/metabolism , Rats, Wistar , Dose-Response Relationship, Drug , Rats, Sprague-Dawley
3.
Article in English | MEDLINE | ID: mdl-37691221

ABSTRACT

BACKGROUND: The medicinal plants of the Cucurbitaceae family, such as Solena heterophylla Lour. fruits, have significant ethnobotanical value and are readily accessible in North East India. AIMS: We conducted a study on Solena heterophylla Lour. fruits to evaluate their anti-diabetic activity in vivo, standardize their HPTLC, and profile their metabolites using LC-QTOF-MS. We aimed to explore the molecular mechanism behind their effects on oxidative stress and glycosylated hemoglobin (HbA1c). METHODS: Firstly, the ethyl acetate fraction of Solena heterophylla Lour. fruits was standardized using Cucurbitacin B as a standard marker by conducting HPTLC evaluation. Next, we delved into analyzing metabolite profiling. In addition, the standardized fraction was utilized in an experimental study to investigate the molecular mechanism of action in an in vivo high-fat diet and a low dose of streptozotocin-induced diabetic model. RESULTS: We have reportedly identified 52 metabolites in the ethyl acetate fraction of Solena heterophylla (EASH). In the in vitro tests, it has been observed that this extract from plants possesses notable inhibitory properties against α-amylase and α-glucosidase. Solena heterophylla fruits with high levels of Cucurbitacin B (2.29% w/w) helped lower FBG levels in animals with EASH treatment. EASH treatment reduced HbA1c levels and normalized liver lipid peroxidation and antioxidant enzyme levels. SGOT, SGPT, and SALP serum enzyme levels also returned to normal. CONCLUSION: Based on the current evaluation, it was found that EASH exhibited encouraging hypoglycemic effects in diabetic rats induced by a low dose of STZ and high-fat diet, which warrants further investigation.


Subject(s)
Acetates , Cucurbitaceae , Diabetes Mellitus, Experimental , Triterpenes , Rats , Animals , Glycated Hemoglobin , Plant Extracts/adverse effects , Antioxidants/pharmacology , Oxidative Stress , Hypoglycemic Agents/adverse effects , Streptozocin/adverse effects , Plants, Edible , Blood Glucose
4.
Chem Sci ; 14(38): 10515-10523, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37799989

ABSTRACT

Cytochrome P450, one of nature's oxidative workhorses, catalyzes the oxidation of C-H bonds in complex biological settings. Extensive research has been conducted over the past five decades to develop a fully functional mimic that activates O2 or H2O2 in water to oxidize strong C-H bonds. We report the first example of a synthetic iron complex that functionally mimics cytochrome P450 in 100% water using H2O2 as the oxidant. This iron complex, in which one methyl group is replaced with a phenyl group in either wing of the macrocycle, oxidized unactivated C-H bonds in small organic molecules with very high selectivity in water (pH 8.5). Several substrates (34 examples) that contained arenes, heteroaromatics, and polar functional groups were oxidized with predictable selectivity and stereoretention with moderate to high yields (50-90%), low catalyst loadings (1-4 mol%) and a small excess of H2O2 (2-3 equiv.) in water. Mechanistic studies indicated the oxoiron(v) to be the active intermediate in water and displayed unprecedented selectivity towards 3° C-H bonds. Under single-turnover conditions, the reactivity of this oxoiron(v) intermediate in water was found to be around 300 fold higher than that in CH3CN, thus implying the role water plays in enzymatic systems.

5.
Chem Commun (Camb) ; 59(19): 2755-2758, 2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36779358

ABSTRACT

An oxoiron(IV) cation radical is generated upon two-electron oxidation of an iron(III) complex bearing an electron-rich methoxy substituted bTAML framework and thoroughly characterized via multiple spectroscopic techniques and density functional theory (DFT). Reactivity studies demonstrate faster rates for oxidation of strong aliphatic sp3 C-H bonds than for its corresponding oxoiron(V) valence tautomer.

6.
Org Lett ; 19(4): 746-749, 2017 02 17.
Article in English | MEDLINE | ID: mdl-28134527

ABSTRACT

The use of a peroxidase-mimicking Fe complex has been reported on the basis of the biuret-modified TAML macrocyclic ligand framework (Fe-bTAML) as a catalyst to perform selective oxidation of unactivated 3° C-H bonds and activated 2° C-H bonds with low catalyst loading (1 mol %) and high product yield (excellent mass balance) under near-neutral conditions and broad substrate scope (18 substrates which includes arenes, heteroaromatics, and polar functional groups). Aliphatic C-H oxidation of 3° and 2° sites of complex substrates was achieved with predictable selectivity using steric, electronic, and stereoelectronic rules that govern site selectivity, which included oxidation of (+)-artemisinin to (+)-10ß-hydroxyartemisinin. Mechanistic studies indicate FeV(O) to be the active oxidant during these reactions.

7.
Chem Commun (Camb) ; 49(46): 5286-8, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23636417

ABSTRACT

Nitroolefins are usually synthesized using the Henry reaction. Here we report an alternative metal-free decarboxylative nitration protocol for the preparation of the nitroolefins from α,ß-unsaturated carboxylic acids using t-butylnitrite (t-BuONO) and TEMPO. α,ß-Unsaturated carboxylic acids bearing ß-aromatic and ß-heteroaromatic substituents gave (E)-nitroolefins exclusively under mild conditions. A radical based pathway has been proposed for this decarboxylative nitration reaction.


Subject(s)
Alkenes/chemical synthesis , Cyclic N-Oxides/chemistry , Nitrites/chemistry , Nitro Compounds/chemical synthesis , Alkenes/chemistry , Carboxylic Acids/chemistry , Decarboxylation , Nitro Compounds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL