Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 15(12): 5726-5734, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36866684

ABSTRACT

Microrobots are at the forefront of research for biomedical and environmental applications. Whereas a single microrobot exhibits quite low performance in the large-scale environment, swarms of microrobots are representing a powerful tool in biomedical and environmental applications. Here, we fabricated phoretic Sb2S3-based microrobots that exhibited swarming behavior under light illumination without any addition of chemical fuel. The microrobots were prepared in an environmentally friendly way by reacting the precursors with bio-originated templates in aqueous solution in a microwave reactor. The crystalline Sb2S3 material provided the microrobots with interesting optical and semiconductive properties. Because of the formation of reactive oxygen species (ROS) upon light illumination, the microrobots possessed photocatalytic properties. To demonstrate the photocatalytic abilities, industrially used dyes, quinoline yellow and tartrazine were degraded using microrobots in the "on-the-fly" mode. Overall, this proof-of-concept work showed that Sb2S3 photoactive material is suitable for designing swarming microrobots for environmental remediation applications.

2.
ACS Nano ; 17(1): 146-156, 2023 01 10.
Article in English | MEDLINE | ID: mdl-36538781

ABSTRACT

Autonomous microrobots are at the forefront of biomedical research as they are expected to be applied for specific tasks at the intracellular level such as cargo delivery, sensing, molecular manipulation, among others. Here, we report on a preparation of microrobots based on quinacridone and indigo, which are members of the organic hydrogen-bonded pigment family. The microrobots were fabricated by asymmetric platinum deposition on corresponding quinacridone and indigo microparticles that possessed a homogeneous size and shape distribution. The microrobots exhibited autonomous locomotion in the presence of hydrogen peroxide, which was further supported by UV irradiation. The organic pigment-based microrobots were studied in the presence of mouse colorectal carcinoma cells, and it was observed that they were internalized into the cells. Internalization was visualized using confocal laser scanning microscopy. This study reveals the possibility of fabricating hydrogen-bonded organic pigment-based microrobots for biomedical applications by employing the principles of nanoarchitectonics.


Subject(s)
Coloring Agents , Neoplasms , Animals , Mice , Indigo Carmine , Hydrogen Bonding , Platinum
3.
ACS Appl Mater Interfaces ; 14(40): 45545-45552, 2022 Oct 12.
Article in English | MEDLINE | ID: mdl-36165774

ABSTRACT

Removal of oil is very important for environmental remediation when considering its negative impacts on living organisms and on the quality of water, groundwater, and soil. Here, we report on the application of hydrophobic magnetic hydrogen-bonded organic pigment-based microrobots for oil removal. The microrobots can be wirelessly navigated in a transversal rotating magnetic field, with full control of their trajectory. In addition, the velocity of magnetic microrobots can be easily controlled by changing the frequency. Due to their hydrophobic nature, the microrobots were able to enter droplets of spilled oil. Consequently, the navigation of the oil droplets was enabled in a magnetic field. Moreover, the microrobots captured within the oil droplets exhibited a swarm-like behavior; they collectively navigated toward further oil droplets that were collected and transferred to a desired location. This concept does not require the use of any additional fuel or surfactants, which is crucial for large-scale oil pollution treatment. Therefore, we believe that these microrobot swarms have great potential in remediating aqueous environments.

4.
Sci Rep ; 10(1): 15720, 2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32973262

ABSTRACT

This work reports on an optimized procedure to synthesize methylammonium bromide perovskite nanoparticles. The ligand-assisted precipitation synthetic pathway for preparing nanoparticles is a cost-effective and promising method due to its ease of scalability, affordable equipment requirements and convenient operational temperatures. Nevertheless, there are several parameters that influence the resulting optical properties of the final nanomaterials. Here, the influence of the choice of solvent system, capping agents, temperature during precipitation and ratios of precursor chemicals is described, among other factors. Moreover, the colloidal stability and stability of the precursor solution is studied. All of the above-mentioned parameters were observed to strongly affect the resulting optical properties of the colloidal solutions. Various solvents, dispersion media, and selection of capping agents affected the formation of the perovskite structure, and thus qualitative and quantitative optimization of the synthetic procedure conditions resulted in nanoparticles of different dimensions and optical properties. The emission maxima of the nanoparticles were in the 508-519 nm range due to quantum confinement, as confirmed by transmission electron microscopy. This detailed study allows the selection of the best optimal conditions when using the ligand-assisted precipitation method as a powerful tool to fine-tune nanostructured perovskite features targeted for specific applications.

5.
Nanoscale ; 12(31): 16556-16561, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32743623

ABSTRACT

Photon cooling via anti-Stokes photoluminescence (ASPL) is a promising approach to realize all-solid-state cryo-refrigeration by photoexcitation. Photoluminescence quantum yields close to 100% and a strong coupling between phonons and excited states are required to achieve net cooling. We have studied the anti-Stokes photoluminescence of thin films of methylammonium lead bromide nanoparticles. We found that the anti-Stokes photoluminescence is thermally activated with an activation energy of ∼80 meV. At room temperature the ASPL up-conversion efficiency is ∼60% and it depends linearly on the excitation intensity. Our results suggest that upon further optimization of their optical properties, the investigated particles could be promising candidates for the demonstration of photon cooling in thin solid films.

6.
Cryst Growth Des ; 20(3): 1388-1393, 2020 Mar 04.
Article in English | MEDLINE | ID: mdl-32161515

ABSTRACT

The efficiency of organo-lead halide perovskite-based optoelectronic devices is dramatically lower for amorphous materials compared to highly crystalline ones. Therefore, it is challenging to optimize and scale up the production of large-sized single crystals of perovskite materials. Here, we describe a novel and original approach to preparing lead halide perovskite single crystals by applying microwave radiation during the crystallization. The microwave radiation primarily causes precise heating control in the whole volume and avoids temperature fluctuations. Moreover, this facile microwave-assisted method of preparation is highly reproducible and fully automated, it and can be applied for various different perovskite structures. In addition, this cost-effective method is expected to be easily scalable because of its versatility and low energy consumption. The crystallization process has low heat losses; therefore, only a low microwave reactor power of 8-15 W during the temperature changes and of less than 1 W during the temperature holding is needed.

7.
Sci Rep ; 9(1): 12966, 2019 09 10.
Article in English | MEDLINE | ID: mdl-31506587

ABSTRACT

Combining the unique properties of peptides as versatile tools for nano- and biotechnology with lead halide perovskite nanoparticles can bring exceptional opportunities for the development of optoelectronics, photonics, and bioelectronics. As a first step towards this challenge sub 10 nm methylammonium lead bromide perovskite colloidal nanoparticles have been synthetizes using commercial cyclic peptide Cyclo(RGDFK), containing 5 amino acids, as a surface stabilizer. Perovskite nanoparticles passivated with Cyclo(RGDFK) possess charge transfer from the perovskite core to the peptide shell, resulting in lower photoluminescence quantum yields, which however opens a path for the application where charge transfer is favorable.


Subject(s)
Calcium Compounds/chemistry , Inorganic Chemicals/chemistry , Lead/chemistry , Luminescence , Nanoparticles/chemistry , Oxides/chemistry , Peptides, Cyclic/chemistry , Semiconductors , Titanium/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...