Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 65(15): 10459-10470, 2022 08 11.
Article in English | MEDLINE | ID: mdl-35895090

ABSTRACT

The effect of polypyridyl Ru(II) complexes on the ability of cancer cells to migrate and invade, two features important in the formation of metastases, is evaluated. In vitro studies are carried out on breast cancer cell lines, MDA-MB-231 and MCF-7, as well as melanoma cell lines A2058 and A375. Three Ru(II) complexes comprising two 4,7-diphenyl-1,10-phenanthroline (dip) ligands and as a third ligand 2,2'-bipyridine (bpy), or its derivative with either 4-[3-(2-nitro-1H-imidazol-1-yl)propyl] (bpy-NitroIm), or 5-(4-{4'-methyl-[2,2'-bipyridine]-4-yl}but-1-yn-1-yl)pyridine-2-carbaldehyde semicarbazone (bpy-SC) moiety attached are examined. The low sub-toxic doses of the studied compounds greatly affected the cancer cells by inhibiting cell detachment, migration, invasion, transmigration, and re-adhesion, as well as increasing cell elasticity. The molecular studies revealed that the Ru(II) polypyridyl complexes impact the activity of the selected integrins and upregulate the expression of focal adhesion components such as vinculin and paxillin, leading to an increased number of focal adhesion contacts.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Ruthenium , 2,2'-Dipyridyl , Antineoplastic Agents/pharmacology , Cell Adhesion , Coordination Complexes/pharmacology , Humans , Ligands , Ruthenium/pharmacology
2.
Cancers (Basel) ; 14(11)2022 May 29.
Article in English | MEDLINE | ID: mdl-35681666

ABSTRACT

Hypoxia is one of the hallmarks of the tumor microenvironment and can be used in the design of targeted therapies. Cellular adaptation to hypoxic stress is regulated by hypoxia-inducible factor 1 (HIF-1). Hypoxia is responsible for the modification of cellular metabolism that can result in the development of more aggressive tumor phenotypes. Reduced oxygen concentration in hypoxic tumor cells leads to an increase in oxidoreductase activity that, in turn, leads to the activation of hypoxia-activated prodrugs (HAPs). The same conditions can convert a non-fluorescent compound into a fluorescent one (fluorescent turn off-on probes), and such probes can be designed to specifically image hypoxic cancer cells. This review focuses on the current knowledge about the expression and activity of oxidoreductases, which are relevant in the activation of HAPs and fluorescent imaging probes. The current clinical status of HAPs, their limitations, and ways to improve their efficacy are briefly discussed. The fluorescence probes triggered by reduction with specific oxidoreductase are briefly presented, with particular emphasis placed on those for which the correlation between the signal and enzyme expression determined with biochemical methods is achievable.

3.
Dalton Trans ; 51(5): 1888-1900, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-35018930

ABSTRACT

The purpose of this study was to investigate the correlation between the spectroscopic and photophysical properties of Ru(II) polypyridyl complexes and their photodynamic activity in vitro. A series of Ru(II) polypyridyl complexes with 4,7-diphenyl-1,10-phenanthroline (dip) and 2,3-bis(2-pyridyl)quinoxaline (dpq) and its derivatives were synthesized and characterized regarding their photophysical, biological, and photodynamic properties. The complexes were evaluated not only in the context of 1O2 generation but also regarding other types of reactive oxygen species (ROS) to assess the possibility of Ru(II) complexes to induce phototoxicity via various ROS using fluorescence and EPR spectroscopy. The compounds were found to be moderately cytotoxic with IC50 values ranging from 1 to 35 µM and retained their cytotoxic activity under hypoxic conditions. The unraveled phototoxic activity is based mainly on the generation of H2O2 and 1O2, highlighting the importance of electron-transfer processes in the observed photodynamic activity of Ru polypyridyl complexes. A combination of photodynamic activity with cytotoxicity under decreased dioxygen concentrations may help overcome the current photodynamic therapy (PDT) limitation. The findings highlight the need for broadening the scope of tested Ru-based photosensitizers.


Subject(s)
Electron Transport/physiology , Oxygen/metabolism , Phenanthrolines/chemistry , Ruthenium Compounds/pharmacology , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Survival , Cell-Free System , Humans , Hydrogen Peroxide , Mice , Models, Molecular , Molecular Structure , Photochemotherapy , Photosensitizing Agents/chemistry , Photosensitizing Agents/pharmacology , Reactive Oxygen Species , Ruthenium Compounds/chemistry
4.
J Inorg Biochem ; 226: 111652, 2022 01.
Article in English | MEDLINE | ID: mdl-34741931

ABSTRACT

In recent years, Ru polypyridyl complexes have been intensively studied for their anticancer activity. The vast majority of research focuses on assessing their cytotoxic activity, as well as targeting cancer cells with them. Since the formation of metastases poses a greater risk than primary tumors, scientists recently began evaluating these compounds as potential metastasis inhibitors. This review highlights the latest achievements in this field with particular attention to the identification of the target proteins responsible for such activity. Cell migration, invasion, and adhesion are key components of metastasis, therefore understanding how they are affected by Ru polypyridyl complexes is of great importance. KEYWORDS: Ruthenium polypyridyl complexes Antimetastatic Migration Invasion Adhesion Metalloproteinases.


Subject(s)
Antineoplastic Agents , Coordination Complexes , Neoplasms , Pyridines , Ruthenium , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Cell Movement/drug effects , Coordination Complexes/chemistry , Coordination Complexes/therapeutic use , Humans , Neoplasm Metastasis , Neoplasms/drug therapy , Neoplasms/metabolism , Neoplasms/pathology , Pyridines/chemistry , Pyridines/therapeutic use , Ruthenium/chemistry , Ruthenium/therapeutic use
5.
Pharmaceuticals (Basel) ; 14(10)2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34681238

ABSTRACT

Primary tumor targeting is the dominant approach in drug development, while metastasis is the leading cause of cancer death. Therefore, in addition to the cytotoxic activity of a series of Ru(II) polypyridyl complexes of the type [Ru(dip)2L]2+ (dip: 4,7-diphenyl-1,10-phenanthroline while L = dip; bpy: 2,2'-bipyridine; bpy-SC: bipyridine derivative bearing a semicarbazone 2-formylopyridine moiety; dpq, dpq(CH3)2, dpb: quinoxaline derivatives) their ability to inhibit cell detachment was investigated. In vitro studies performed on lung cancer A549 cells showed that they accumulate in cells very well and exhibit moderate cytotoxicity with IC50 ranging from 4 to 13 µM. Three of the studied compounds that have dip, bpy-SC, or dpb ligands after treatment of the cells with a non-toxic dose (<1/2IC50) enhanced their adhesion properties demonstrated by lower detachment in the trypsin resistance assay. The same complexes inhibited both MMP-2 and MMP-9 enzyme activities with IC50 ranging from 2 to 12 µM; however, the MMP-9 inhibition was stronger. More detailed studies for [Ru(dip)2(bpy-SC)]2+, which induced the greatest increase in cell adhesion, revealed that it is predominately accumulated in the cytoskeletal fraction of A549 cells. Moreover, cells treated with this compound showed the localization of MMP-9 to a greater extent also in the cytoskeleton. Taken together, our results indicate the possibility of a reduction of metastatic cells escaping from the primary lesion to the surrounding tissue by prevention of their detachment and by influencing the activity of MMP-2 and MMP-9.

SELECTION OF CITATIONS
SEARCH DETAIL
...