Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Histochem Cytochem ; 45(11): 1523-31, 1997 Nov.
Article in English | MEDLINE | ID: mdl-9358854

ABSTRACT

Interphase nuclei are organized into structural and functional domains. The coiled body, a nuclear organelle of unknown function, exhibits cell type-specific changes in number and morphology. Its association with nucleoli and with small nuclear ribonucleo-proteins (snRNPs) indicates that it functions in RNA processing. In cycling cells, coiled bodies are round structures not associated with nucleoli. In contrast, in neurons, they frequently present as nucleolar "caps." To test the hypothesis that neuronal differentiation is accompanied by changes in the spatial association of coiled bodies with nucleoli and in their morphology, PC12 cells were differentiated into a neuronal phenotype with nerve growth factor (NGF) and coiled bodies detected by immunocytochemical localization of p80-coilin and snRNPs. The fraction of cells that showed coiled bodies as nucleolar caps increased from 1.6 +/- 0.9% (mean +/- SEM) in controls to 16.5 +/- 1.6% in NGF-differentiated cultures. The fraction of cells with ring-like coiled bodies increased from 17.2 +/- 5.0% in controls to 57.8 +/- 4.4% in differentiated cells. This was accompanied by a decrease, from 81.2 +/- 5.7% to 25.7 +/- 3.1%, in the fraction of cells with small, round coiled bodies. SnRNPs remained associated with typical coiled bodies and with ring-like coiled bodies during NGF-induced recruitment of snRNPs to the nuclear periphery. Together with the observation that coiled bodies are also present as nucleolar caps in sensory neurons, the results indicate that coiled bodies alter their morphology and increase their association with nucleoli during NGF-induced neuronal differentiation.


Subject(s)
Cell Differentiation/drug effects , Cell Nucleus/drug effects , Cell Nucleus/ultrastructure , Nerve Growth Factors/pharmacology , Neurons/chemistry , Animals , Animals, Newborn , Cell Nucleolus/chemistry , Cell Nucleolus/ultrastructure , Cell Nucleus/chemistry , Ganglia, Spinal/chemistry , Immunohistochemistry , Mice , Neurons/drug effects , Neurons/ultrastructure , Nuclear Proteins/analysis , Nuclear Proteins/immunology , PC12 Cells , Rats , Ribonucleoproteins, Small Nuclear/analysis , Ribonucleoproteins, Small Nuclear/immunology
2.
Exp Cell Res ; 217(2): 227-39, 1995 Apr.
Article in English | MEDLINE | ID: mdl-7698222

ABSTRACT

The existence of a function-dependent, nonrandom organization of chromatin domains within interphase nuclei is supported by evidence which suggests that specific chromatin domains undergo spatial rearrangement under conditions which alter gene expression. Exposure to estrogen of male Xenopus laevis hepatocytes in vitro results in de novo activation of vitellogenin mRNA production and vitellogenin protein synthesis and provides an ideal model to study the association between chromatin organization and changes in gene expression. In a test of the hypothesis that the de novo induction of vitellogenesis in male X. laevis is associated with a spatial rearrangement of specific chromatin domains, centromeric regions were localized by immunofluorescent labeling of associated kinetochore proteins in naive and in estrogen-treated, vitellogenic cells. Analyses by confocal scanning laser microscopy of the three-dimensional spatial distribution of kinetochores in estrogen-treated male hepatocytes showed that a significantly greater proportion of signals was associated with the nuclear periphery than in non-estrogen-treated, naive male cells. In hepatocyte nuclei, quantification of kinetochore signal sizes using image analysis showed that these signals were fewer in number and showed greater variation in size than those of cells in metaphase, with larger signals exhibiting total normalized fluorescence intensities of two, three, four, and five times that associated with kinetochore signals of metaphase cells. These observations are taken to reflect the existence of clustering of kinetochores and, by extension, of centromeres in these cells. In summary, the results show that centromeric domains within interphase nuclei of Xenopus hepatocytes occur as clusters and that these domains undergo spatial rearrangement under conditions which alter the transcriptional state of the cell.


Subject(s)
Cell Nucleus/ultrastructure , Centromere/ultrastructure , Liver/ultrastructure , Vitellogenins/genetics , Animals , Cells, Cultured , Estrogens/physiology , Gene Expression , Interphase , Kinetochores/ultrastructure , Male , Microscopy, Confocal , Vitellogenesis/genetics , Xenopus laevis
3.
Neurotoxicology ; 14(4): 505-11, 1993.
Article in English | MEDLINE | ID: mdl-8164893

ABSTRACT

Diethylstilbestrol (DES) is a synthetic estrogen with carcinogenic properties. DES is known to alter cytoskeletal components, including the organization of actin stress fibres in C6 rat glioma cells. In a test of the hypothesis that DES disrupts actin filaments of growth cones in neuron-like cells, DES-induced changes in filopodial lengths were quantified in rat pheochromocytoma (PC12) cells in vitro. DES significantly altered growth cone morphology, with collapse of growth cone filopodia and neurite retraction invariably occurring at a concentration of 10 microM. At 5 microM DES, transient reductions in total filopodial lengths occurred. At DES concentrations of 0.1 nM and 1 nM, reductions in total filopodial lengths occurred in a fraction of growth cones. Evidence exists which shows that growth cone activity and morphology are intimately linked to levels of intracellular, free calcium and that DES increases such levels. Measurements of free intracellular calcium levels by fluorescence microscopy, at times concurrent with the DES-induced reduction in total filopodial lengths, showed that calcium levels were indeed significantly increased by 10 microM DES. Labelling of filamentous actin (f-actin) with FITC-phalloidin showed that the f-actin distribution in growth cones exposed to DES could not be differentiated from the distribution found in spontaneously retracting growth cones. Together with evidence which showed that growth cone motility was not affected, the results are taken to indicate that DES, rather than acting directly on the cytoskeleton, exerts its effects indirectly, by a calcium-induced destabilization of actin filaments in the growth cone.


Subject(s)
Actins/metabolism , Calcium/metabolism , Diethylstilbestrol/toxicity , Neurons/drug effects , Animals , Neurons/metabolism , Neurons/pathology , PC12 Cells , Rats
SELECTION OF CITATIONS
SEARCH DETAIL