Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Antiviral Res ; 222: 105806, 2024 02.
Article in English | MEDLINE | ID: mdl-38211737

ABSTRACT

After three years of the SARS-CoV-2 pandemic, the search and availability of relatively low-cost benchtop therapeutics for people not at high risk for a severe disease are still ongoing. Although vaccines and new SARS-CoV-2 variants reduce the death toll, the long COVID-19 along with neurologic symptoms can develop and persist even after a mild initial infection. Reinfections, which further increase the risk of sequelae in multiple organ systems as well as the risk of death, continue to require caution. The spike protein of SARS-CoV-2 is an important target for both vaccines and therapeutics. The presence of disulfide bonds in the receptor binding domain (RBD) of the spike protein is essential for its binding to the human ACE2 receptor and cell entry. Here, we demonstrate that thiol-reducing peptides based on the active site of oxidoreductase thioredoxin 1, called thioredoxin mimetic (TXM) peptides, can prevent syncytia formation, SARS-CoV-2 entry into cells, and infection in a mouse model. We also show that TXM peptides inhibit the redox-sensitive HIV pseudotyped viral cell entry. These results support disulfide targeting as a common therapeutic strategy for treating infections caused by viruses using redox-sensitive fusion. Furthermore, TXM peptides exert anti-inflammatory properties by lowering the activation of NF-κB and IRF signaling pathways, mitogen-activated protein kinases (MAPKs) and lipopolysaccharide (LPS)-induced cytokines in mice. The antioxidant and anti-inflammatory effects of the TXM peptides, which also cross the blood-brain barrier, in combination with prevention of viral infections, may provide a beneficial clinical strategy to lower viral infections and mitigate severe consequences of COVID-19.


Subject(s)
COVID-19 , Vaccines , Animals , Humans , Mice , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Post-Acute COVID-19 Syndrome , Peptides/pharmacology , Vaccines/pharmacology , Thioredoxins/chemistry , Thioredoxins/metabolism , Thioredoxins/pharmacology , Anti-Inflammatory Agents/pharmacology , Disulfides/pharmacology , Giant Cells , Protein Binding
2.
Adv Exp Med Biol ; 1435: 199-218, 2024.
Article in English | MEDLINE | ID: mdl-38175477

ABSTRACT

Clostridioides difficile, a Gram-positive spore-forming anaerobic bacterium, has rapidly emerged as the leading cause of nosocomial diarrhoea in hospitals. The availability of large numbers of genome sequences, mainly due to the use of next-generation sequencing methods, has undoubtedly shown their immense advantages in the determination of C. difficile population structure. The implementation of fine-scale comparative genomic approaches has paved the way for global transmission and recurrence studies, as well as more targeted studies, such as the PaLoc or CRISPR/Cas systems. In this chapter, we provide an overview of recent and significant findings on C. difficile using comparative genomic studies with implications for epidemiology, infection control and understanding of the evolution of C. difficile.


Subject(s)
Clostridioides difficile , Clostridioides , Clostridioides difficile/genetics , Base Composition , Phylogeny , RNA, Ribosomal, 16S , Sequence Analysis, DNA , Genomics
3.
Euro Surveill ; 28(8)2023 02.
Article in English | MEDLINE | ID: mdl-36820641

ABSTRACT

BackgroundSequencing of SARS-CoV-2 PCR-positive samples was introduced in Slovenia in January 2021. Our surveillance programme comprised three complementary schemes: (A) non-targeted sequencing of at least 10% of samples, (B) sequencing of samples positive after PCR screening for variants of concern (VOC) and (C) sequencing as per epidemiological indication.AimWe present the analysis of cumulative data of the non-targeted surveillance of SARS-CoV-2 and variant-dependent growth kinetics for the five most common variants in Slovenia for the first 9 months of 2021.MethodsSARS-CoV-2 PCR-positive samples, from January to September 2021, were selected for sequencing according to the national surveillance plan. Growth kinetics studies were done on Vero E6 cells.ResultsAltogether 15,175 genomes were sequenced and 64 variants were detected, of which three successively prevailed. Variant B.1.258.17 was detected in ca 80% of samples in January and was replaced, within 9 weeks, by the Alpha variant. The number of cases decreased substantially during the summer of 2021. However, the introduction of the Delta variant caused a fourth wave and completely outcompeted other variants. Other VOC were only detected in small numbers. Infection of Vero E6 cells showed higher replication rates for the variants Alpha and Delta, compared with B.1.258.17, B.1.258, and B.1.1.70, which dominated in Slovenia before the introduction of the Alpha and Delta variants.ConclusionInformation on SARS-CoV-2 variant diversity provided context to the epidemiological data of PCR-positive cases, contributed to control of the initial spread of known VOC and influenced epidemiological measures.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Molecular Epidemiology , Slovenia/epidemiology , SARS-CoV-2/genetics , COVID-19/epidemiology
4.
Life Sci Alliance ; 6(4)2023 04.
Article in English | MEDLINE | ID: mdl-36781180

ABSTRACT

Lactic acid bacteria (LAB) and Bifidobacterium sp. (bifidobacteria) can carry antimicrobial resistance genes (ARGs), yet data on resistance mechanisms in these bacteria are limited. The aim of our study was to identify the underlying genetic mechanisms of phenotypic resistance in 103 LAB and bifidobacteria using whole-genome sequencing. Sequencing data not only confirmed the presence of 36 acquired ARGs in genomes of 18 strains, but also revealed wide dissemination of intrinsic ARGs. The presence of acquired ARGs on known and novel mobile genetic elements raises the possibility of their horizontal spread. In addition, our data suggest that mutations may be a common mechanism of resistance. Several novel candidate resistance mechanisms were uncovered, providing a basis for further in vitro studies. Overall, 1,314 minimum inhibitory concentrations matched with genotypes in 92.4% of the cases; however, prediction of phenotype based on genotypic data was only partially efficient, especially with respect to aminoglycosides and chloramphenicol. Our study sheds light on resistance mechanisms and their transferability potential in LAB and bifidobacteria, which will be useful for risk assessment analysis.


Subject(s)
Bifidobacterium , Lactobacillales , Bifidobacterium/genetics , Lactobacillales/genetics , Anti-Bacterial Agents/pharmacology , Drug Resistance, Microbial , Genomics
5.
Front Med (Lausanne) ; 9: 962653, 2022.
Article in English | MEDLINE | ID: mdl-36275814

ABSTRACT

Background: SARS-CoV-2 infection does not confer long immunity. However, studies suggest that prior infection is associated with lower risk of reinfection and milder outcomes of recurrent infections. The aims of this retrospective observational case-control study were to describe the clinical and molecular characteristics of genetically confirmed Delta reinfection cases and to assess the potential protective role of preceding infection on the severity of reinfection. Methods: We used next generation sequencing (NGS) to explore if cases with two positive real time RT-PCR tests > 90 days apart were infected with a different SARS-CoV-2 variant. Cases with confirmed reinfection between August 1st and October 31st, 2021 (the Delta wave) in Slovenia were matched 1:4 by age, sex and timeframe (week of positive test) with individuals with primary infection. Sociodemographic and epidemiologic data, vaccination status, and data on hospitalization and outcome of infection were retrieved from several centralized and standardized national databases. Additional epidemiologic surveys were performed on a limited number of cases and controls. Results: We identified 628 cases of genetically confirmed reinfection during the study period and matched them with 2,512 control subjects with Delta primary infection. Primary infections in individuals with reinfection were mainly caused by B.1.258.17 (51.1%), followed by B.1.1.7 (15.1%) and reinfection was detected on average 271 days after primary infection (range 101-477 days). Our results show a substantially lower probability of hospitalization in cases with reinfection compared with controls (OR: 0.21, p = 0.017), but no significant difference was observed in intensive care unit admission and deaths. We observed a significantly lower proportion of vaccinated individuals among cases compared to controls (4.5% vs. 28.2%), suggesting that hybrid immunity leads to lower probability of reinfection. Detailed analysis of the temporal distribution of variants, responsible for reinfections, showed no significant differences in reinfection potential. Conclusion: Reinfection with the SARS-CoV-2 Delta variant resulted in fewer hospitalizations compared to the primary Delta infection, suggesting that primary infection may, to some extent, produce at least short lasting protective immunity. This study provides additional insight into the reinfection dynamics that may allow appropriate public health measures to be taken in subsequent waves of the COVID-19 pandemic.

6.
Future Microbiol ; 17: 1125-1131, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35880542

ABSTRACT

Aim: To evaluate the accuracy of two PCR-based techniques for detecting SARS-CoV-2 variant Alpha (B.1.1.7). Materials & methods: A multicenter prospective cohort with 1137 positive specimens from Slovenia was studied. A mutation-based assay (rTEST-COVID-19 qPCR B.1.1.7 assay) and amplification curve pattern analysis of the Allplex SARS-CoV-2 assay were compared with whole-genome sequencing. Results: SARS-CoV-2 variant Alpha was detected in 155 samples (13.6%). Sensitivity and specificity were 98.1 and 98.0%, respectively, for the rTEST-COVID-19 qPCR B.1.1.7 assay and 97.4 and 97.5%, respectively, for amplification curve pattern analysis. Conclusion: The good analytical performance of both methods was confirmed for the preliminary identification of SARS-CoV-2 variant Alpha. This cost-effective principle for screening SARS-CoV-2 populations is also applicable to other emerging variants and may help to conserve some whole-genome sequencing resources.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/diagnosis , Humans , Prospective Studies , SARS-CoV-2/genetics , Sensitivity and Specificity
7.
Euro Surveill ; 27(15)2022 04.
Article in English | MEDLINE | ID: mdl-35426363

ABSTRACT

BackgroundWhile human-to-human transmission of Clostridioides difficile occurs often, other infection sources, including food, animals and environment, are under investigation.AimWe present a large study on C. difficile in a food item in Europe, encompassing 12 European countries (Austria, France, Greece, Ireland, Italy, the Netherlands, Poland, Slovakia, Spain, Sweden, Romania and the United Kingdom).MethodsPotato was selected because of availability, ease of sampling and high C. difficile positivity rates. Identical protocols for sampling and isolation were used, enabling a direct comparison of the C. difficile positivity rate.ResultsFrom C. difficile-positive potato samples (33/147; 22.4%), we obtained 504 isolates, grouped into 38 PCR ribotypes. Positivity rates per country varied (0-100%) and were at least 10% in 9/12 countries. No geographical clustering of samples with high positivity rates or in PCR ribotype distribution was observed. The most frequently detected PCR ribotypes (014/020, 078/126, 010 and 023) are also commonly reported in Europe among human clinically relevant isolates, in animal isolates and in the environment. Whole genome sequencing revealed several genetically related strain pairs (Spain/RT126, France/RT010, Austria and Sweden/RT276) and a cluster of very similar strains in RT078/126.ConclusionOur results suggest, the high potato contamination rates could have public health relevance. They indicate potatoes can serve as a vector for introducing C. difficile spores in the household environment, where the bacterium can then multiply in sensitive hosts with disrupted or unmature microbiota. Potato contamination with PCR ribotypes shared between humans, animals and soil is supportive of this view.


Subject(s)
Clostridioides difficile , Clostridium Infections , Solanum tuberosum , Animals , Clostridioides , Clostridioides difficile/genetics , Clostridium Infections/diagnosis , Clostridium Infections/epidemiology , Clostridium Infections/microbiology , Europe/epidemiology , Humans , Polymerase Chain Reaction , Ribotyping , Solanum tuberosum/genetics
8.
Microb Genom ; 8(2)2022 02.
Article in English | MEDLINE | ID: mdl-35166655

ABSTRACT

Clostridioides difficile is a pathogen often associated with hospital-acquired infection or antimicrobial-induced disease; however, increasing evidence indicates infections can result from community or environmental sources. Most genomic sequencing of C. difficile has focused on clinical strains, although evidence is growing that C. difficile spores are widespread in soil and water in the environment. In this study, we sequenced 38 genomes collected from soil and water isolates in Flagstaff (AZ, USA) and Slovenia in an effort targeted towards environmental surveillance of C. difficile. At the average nucleotide identity (ANI) level, the genomes were divergent to C. difficile at a threshold consistent with different species. A phylogenetic analysis of these divergent genomes together with Clostridioides genomes available in public repositories confirmed the presence of three previously described, cryptic Clostridioides species and added two additional clades. One of the cryptic species (C-III) was almost entirely composed of Arizona and Slovenia genomes, and contained distinct sub-groups from each region (evidenced by SNP and gene-content differences). A comparative genomics analysis identified multiple unique coding sequences per clade, which can serve as markers for subsequent environmental surveys of these cryptic species. Homologues to the C. difficile toxin genes, tcdA and tcdB, were found in cryptic species genomes, although they were not part of the typical pathogenicity locus observed in C. difficile, and in silico PCR suggested that some would not amplify with widely used PCR diagnostic tests. We also identified gene homologues in the binary toxin cluster, including some present on phage and, for what is believed to be the first time, on a plasmid. All isolates were obtained from environmental samples, so the function and disease potential of these toxin homologues is currently unknown. Enzymatic profiles of a subset of cryptic isolates (n=5) demonstrated differences, suggesting that these isolates contain substantial metabolic diversity. Antimicrobial resistance (AMR) was observed across a subset of isolates (n=4), suggesting that AMR mechanisms are intrinsic to the genus, perhaps originating from a shared environmental origin. This study greatly expands our understanding of the genomic diversity of Clostridioides. These results have implications for C. difficile One Health research, for more sensitive C. difficile diagnostics, as well as for understanding the evolutionary history of C. difficile and the development of pathogenesis.


Subject(s)
Clostridioides/classification , Clostridioides/genetics , Clostridioides/isolation & purification , Anti-Bacterial Agents/pharmacology , Arizona , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridioides difficile/classification , Clostridioides difficile/genetics , Clostridioides difficile/isolation & purification , Clostridium Infections/epidemiology , Cross Infection , Drug Resistance, Bacterial/genetics , Genes, Bacterial/genetics , Genome, Bacterial , Genomics , Humans , Phylogeny , Polymorphism, Single Nucleotide , RNA, Ribosomal, 16S , Slovenia
9.
Med Glas (Zenica) ; 18(1): 38-46, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33345531

ABSTRACT

Aim To characterize methicillin-resistant S. aureus (MRSA) strains phenotypically and genotypically and to determine their clonal affiliation, representation and antibiotic resistance profile. Methods A total of 62 randomly selected MRSA isolates of different clinical samples collected from 2009 to 2017 were phenotypically and genotypically analysed. Phenotypic analyses were performed by standard microbiological procedures, and using VITEK 2/AES instrument as well as MALDI-TOF (matrix-assisted laser desorption/ionization) technology. Genotypic characterization included spa, MLST (multilocus sequence typing) and SCCmec typing, and detection of the Panton-Valentine leukocidin (PVL) and other enterotoxin encoding genes. Results The largest number of isolates, 21 (33.87%) belonged to ST228-MRSA-I, spa type t041, t1003 and t001. Other major clones were: ST239-MRSA-III, spa type t037 and t030 (27.41%); ST8-MRSA-IV, spa type t008 and t121 (12.9%); ST247-MRSA-I, spa type t051 (4.83%). PVL was detected in 10 isolates (SCCmec IV/V). During 2009 and 2010 the most frequent MRSA strain was South German clone, ST228-MRSA-I (80% and 90%, respectively), while in later years it was replaced with Brazilian-Hungarian clone ST239-MRSA-III (75% in 2015 and 2016). The South German clone, spa type t041 in 90.48% of cases was resistant to clindamycin, ciprofloxacin, erythromycin, cefoxitin, gentamicin, kanamycin, tobramycin and penicillin, while 70.58% samples of the Brazilian-Hungarian clone spa type t037 were additionally resistant to tetracycline and rifampicin. Conclusion This research can supplement the existing knowledge about the clonal distribution of MRSA in Bosnia and Herzegovina and their sensitivity to antibiotics in order to improve the national control of these infections.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Anti-Bacterial Agents/pharmacology , Bosnia and Herzegovina/epidemiology , Humans , Methicillin-Resistant Staphylococcus aureus/genetics , Microbial Sensitivity Tests , Multilocus Sequence Typing , Staphylococcal Infections/epidemiology
11.
Zdr Varst ; 59(4): 236-244, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33133280

ABSTRACT

INTRODUCTION: Although the distinction between the Community-Associated-Methicillin-Resistant Staphylococcus aureus (CA-MRSA) and Hospital-Associated-Methicillin-Resistant S. aureus (HA-MRSA) has blurred in recent years, the CA-MRSA is an important group because of its potential to cause fulminant and severe infections. Its importance has further increased with the emergence of Livestock-Associated-Methicillin-Resistant S. aureus (LA-MRSA). METHODS: In the present study we analysed clonal distributions and virulence factors in presumptive CA-MRSA isolated from January 2014 to December 2015 and compared the results with our previous study from 2010. Phenotypic definition for presumptive CA-MRSA was based on resistance to cefoxitin and oxacillin and susceptibility to at least two of the following four antibiotics: ciprofloxacin, erythromycin, clindamycin and gentamicin. RESULTS: In 2014 and 2015 altogether 304 MRSA isolates fulfilled our screening phenotypic definition, 45 isolates were cultivated from clinical specimens and 259 from screening specimens. Sequence types ST398, LA-MRSA and mecC MRSA increased significantly in 2015 compared to 2010 (p-value <0.05) and were spread over Slovenia. CONCLUSION: The clonal distribution of presumptive CA-MRSA has changed within the study period in Slovenia. In 2015 the most frequent clone among clinical and screening specimens was a pig-associated clone, ST398, but the number of confirmed ST398 infections remains low. While previously ST398 and mecC positive MRSA strains were geographically limited, they have spread throughout the country since 2010.

12.
Microb Genom ; 6(10)2020 10.
Article in English | MEDLINE | ID: mdl-33030421

ABSTRACT

Clostridioides difficile is a common cause of nosocomial diarrhoea. Toxins TcdA and TcdB are considered to be the main virulence factors and are encoded by the PaLoc region, while the binary toxin encoded in the CdtLoc region also contributes to pathogenicity. Variant toxinotypes reflect the genetic diversity of a key toxin-encoding 19 kb genetic element (the PaLoc). Here, we present analysis of a comprehensive collection of all known major C. difficile toxinotypes to address the evolutionary relationships of the toxin gene variants, the mechanisms underlying the origin and development of variability in toxin genes and the PaLoc, and the relationship between structure and function in TcdB variants. The structure of both toxin genes is modular, composed of interspersed blocks of sequences corresponding to functional domains and having different evolutionary histories, as shown by the distribution of mutations along the toxin genes and by incongruences of domain phylogenies compared to overall C. difficile cluster organization. In TcdB protein, four mutation patterns could be differentiated, which correlated very well with the type of TcdB cytopathic effect (CPE) on cultured cells. Mapping these mutations to the three-dimensional structure of the TcdB showed that the majority of the variation occurs in surface residues and that point mutation at residue 449 in alpha helix 16 differentiated strains with different types of CPE. In contrast to the PaLoc, phylogenetic trees of the CdtLoc were more consistent with the core genome phylogenies, but there were clues that CdtLoc can also be exchanged between strains.


Subject(s)
ADP Ribose Transferases/genetics , Bacterial Proteins/genetics , Bacterial Toxins/genetics , Clostridioides difficile/genetics , Enterotoxins/genetics , Genome, Bacterial/genetics , Clostridioides difficile/pathogenicity , Diarrhea/microbiology , Enterocolitis, Pseudomembranous/microbiology , Evolution, Molecular , Humans , Multigene Family/genetics , Multilocus Sequence Typing , Phylogeny , Virulence Factors/genetics , Whole Genome Sequencing
13.
Front Microbiol ; 11: 1310, 2020.
Article in English | MEDLINE | ID: mdl-32636819

ABSTRACT

Clostridioides (Clostridium) difficile is the most commonly recognized cause of infectious diarrhea in healthcare settings. Currently there is no vaccine to prevent initial or recurrent C. difficile infection (CDI). Two large clostridial toxins, TcdA and TcdB, are the primary virulence factors for CDI. Immunological approaches to prevent CDI include antibody-mediated neutralization of the cytotoxicity of these toxins. An understanding of the sequence diversity of the two toxins expressed by disease causing isolates is critical for the interpretation of the immune response to the toxins. In this study, we determined the whole genome sequence (WGS) of 478 C. difficile isolates collected in 12 countries between 2004 and 2018 to probe toxin variant diversity. A total of 44 unique TcdA variants and 37 unique TcdB variants were identified. The amino acid sequence conservation among the TcdA variants (≥98%) is considerably greater than among the TcdB variants (as low as 86.1%), suggesting that different selection pressures may have contributed to the evolution of the two toxins. Phylogenomic analysis of the WGS data demonstrate that isolates grouped together based on ribotype or MLST code for multiple different toxin variants. These findings illustrate the importance of determining not only the ribotype but also the toxin sequence when evaluating strain coverage using vaccine strategies that target these virulence factors. We recommend that toxin variant type and sequence type (ST), be used together with ribotype data to provide a more comprehensive strain classification scheme for C. difficile surveillance during vaccine development objectives.

14.
Anaerobe ; 62: 102183, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32182567

ABSTRACT

Clostridioides difficile was isolated from 12 of 25 samples collected from the gardens of five individual houses and 132 isolates belonged to 12 PCR ribotypes. Compost material had the highest positivity rate and the highest PCR ribotype diversity in comparison to soil from vegetable and flower gardens. Isolated PCR ribotypes overlap with common human and animal types but also with divergent C. difficile lineages common for the soil environment.


Subject(s)
Clostridioides difficile/isolation & purification , Environmental Microbiology , Environmental Monitoring , Composting , Humans , Soil Microbiology
15.
G3 (Bethesda) ; 10(3): 881-890, 2020 03 05.
Article in English | MEDLINE | ID: mdl-31919110

ABSTRACT

Bacillus firmus nematicidal bacterial strains are used to control plant parasitic nematode infestation of crops in agricultural production. Proteases are presumed to be the primary nematode virulence factors in nematicidal B. firmus degrading the nematode cuticle and other organs. We determined and compared the whole genome sequences of two nematicidal strains. Comparative genomics with a particular focus on possible virulence determinants revealed a wider range of possible virulence factors in a B. firmus isolate from a commercial bionematicide and a wild type Bacillus sp. isolate with nematicidal activity. The resulting 4.6 Mb B. firmus I-1582 and 5.3 Mb Bacillus sp. ZZV12-4809 genome assemblies contain respectively 18 and 19 homologs to nematode-virulent proteases, two nematode-virulent chitinase homologs in ZZV12-4809 and 28 and 36 secondary metabolite biosynthetic clusters, projected to encode antibiotics, small peptides, toxins and siderophores. The results of this study point to the genetic capability of B. firmus and related species for nematode virulence through a range of direct and indirect mechanisms.


Subject(s)
Antinematodal Agents , Bacillus/genetics , Bacterial Proteins/genetics , Virulence Factors/genetics , Bacillus/isolation & purification , Drug Resistance, Bacterial/genetics , Genome, Bacterial , Genomics , Whole Genome Sequencing
17.
Front Public Health ; 7: 309, 2019.
Article in English | MEDLINE | ID: mdl-31709221

ABSTRACT

Clostridioides difficile is an important nosocomial pathogen increasingly observed in the community and in different non-human reservoirs. The epidemiology and transmissibility of C. difficile has been studied using a variety of typing methods, including more recently developed whole-genome sequence (WGS) analysis that is becoming used routinely for bacterial typing worldwide. Here we review the schemes for WGS-based typing methods available for C. difficile and their applications in the field of human C. difficile infection (CDI). The two main approaches to discover genomic variations are single nucleotide variant (SNV) analysis and methods based on gene-by-gene comparisons (frequently called core genome or whole genome MLST, cgMLST, or wgMLST). SNV analysis currently provides the ultimate resolution, however, typing nomenclature and standardized methodology are missing. On the other hand, gene-by-gene approaches allow portability and standardized nomenclature, and are therefore becoming increasingly popular in bacterial epidemiology and outbreak investigation. Two commercial software packages (BioNumerics and Ridom SeqSphere+) and an open source database (EnteroBase) for allele and sequence type determination for C. difficile are currently available. Proof-of-concept WGS studies have already enabled advances in the investigation of the population structure of C. difficile species, microevolution within the epidemic strains, intercontinental transmission over time and in tracking of transmission events. WGS of clinical C. difficile isolates demonstrated a considerable genetic diversity suggesting diverse reservoirs for CDI. WGS was also shown to aid in resolving relapses and reinfections in recurrent CDI and has potential for use as a tool for assessing hospital infection prevention and control performance.

18.
Food Microbiol ; 78: 194-200, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30497603

ABSTRACT

Clostridium difficile, recently reclassified to Clostridioides difficile, is among most important causes of intestinal infections in humans. Zoonotic potential and foodborne transmissions are considered to be partially involved in C. difficile spread. Here we report prevalence of C. difficile in 142 retail and 12 homegrown vegetables in Slovenia between years 2014 and 2017. The overall prevalence of C. difficile on vegetables was 18,2% (28/154). A total of 115 isolates were obtained which belonged to 25 PCR ribotypes. Ten of those were toxigenic and PCR ribotype 014/020 was the most prevalent. Most of 25 determined PCR ribotypes were previously reported in humans, animals, soil or water in Slovenia. Among tested vegetables, potatoes had the highest positivity rate (28,0% vs. 6,7% and 9,4% for ginger and leaf vegetables). Altogether 66,7% of C. difficile positive potato samples were imported from 12 different countries of three different continents. The origin of contamination could be any point between production and retail store, however, our results suggest a possibility that potatoes represent a transnational and transcontinental way of C. difficile transmissions.


Subject(s)
Clostridioides difficile/isolation & purification , Food Microbiology , Solanum tuberosum/microbiology , Vegetables/microbiology , Animals , Clostridioides difficile/genetics , Clostridium Infections/microbiology , Clostridium Infections/transmission , Feces/microbiology , Foodborne Diseases/epidemiology , Foodborne Diseases/microbiology , Foodborne Diseases/prevention & control , Humans , Polymerase Chain Reaction/methods , Prevalence , Ribotyping , Slovenia/epidemiology , Zoonoses/epidemiology , Zoonoses/microbiology , Zoonoses/prevention & control
19.
J Clin Microbiol ; 56(6)2018 06.
Article in English | MEDLINE | ID: mdl-29618503

ABSTRACT

Clostridium difficile, recently renamed Clostridioides difficile, is the most common cause of antibiotic-associated nosocomial gastrointestinal infections worldwide. To differentiate endogenous infections and transmission events, highly discriminatory subtyping is necessary. Today, methods based on whole-genome sequencing data are increasingly used to subtype bacterial pathogens; however, frequently a standardized methodology and typing nomenclature are missing. Here we report a core genome multilocus sequence typing (cgMLST) approach developed for C. difficile Initially, we determined the breadth of the C. difficile population based on all available MLST sequence types with Bayesian inference (BAPS). The resulting BAPS partitions were used in combination with C. difficile clade information to select representative isolates that were subsequently used to define cgMLST target genes. Finally, we evaluated the novel cgMLST scheme with genomes from 3,025 isolates. BAPS grouping (n = 6 groups) together with the clade information led to a total of 11 representative isolates that were included for cgMLST definition and resulted in 2,270 cgMLST genes that were present in all isolates. Overall, 2,184 to 2,268 cgMLST targets were detected in the genome sequences of 70 outbreak-associated and reference strains, and on average 99.3% cgMLST targets (1,116 to 2,270 targets) were present in 2,954 genomes downloaded from the NCBI database, underlining the representativeness of the cgMLST scheme. Moreover, reanalyzing different cluster scenarios with cgMLST were concordant to published single nucleotide variant analyses. In conclusion, the novel cgMLST is representative for the whole C. difficile population, is highly discriminatory in outbreak situations, and provides a unique nomenclature facilitating interlaboratory exchange.


Subject(s)
Clostridioides difficile/classification , Genome, Bacterial , Multilocus Sequence Typing/methods , Bacterial Typing Techniques/standards , Bayes Theorem , Genotype , Humans , Multilocus Sequence Typing/standards , Phylogeny , Whole Genome Sequencing
20.
Zoonoses Public Health ; 65(6): 669-674, 2018 09.
Article in English | MEDLINE | ID: mdl-29687626

ABSTRACT

Clostridium difficile is an anaerobic, spore-forming bacterium that causes intestinal infections. Although C. difficile is still predominantly considered as a nosocomial pathogen, there has been an increase in the number of community-associated infections. Since C. difficile is ubiquitous and can be isolated from nearly any environment, one of the possibilities for community acquisition could be exposure to spores in the domestic environment. The aim of this study was to evaluate the presence of C. difficile spores on shoes, slippers and on dog paws and to explore the importance of these surfaces as vectors for the dissemination of C. difficile in a domestic environment. Overall, C. difficile was present in 14 (70%) of 20 households and in 31 of 90 (34%) collected samples. Shoes and slippers had the highest positivity rates, 19 of 44 (43%) and 6 of 21 (28%), respectively, followed by dog paws 6 of 25 (24%). Thirteen C. difficilePCR ribotypes were identified with half of the isolates belonging to ribotype 014/020, which is the predominant type circulating in human population and is also commonly found in the environment (e.g. soil and water) in Slovenia. In three households, identical PCR ribotypes were found on dog paws, shoes and slippers. To understand the fine-scale genetic relatedness of these isolates, we sequenced the genomes. Low level of single nucleotide variant (SNV) differences between isolates from the same households, consistent with a recent transmission from a common source, were seen for isolates of PCR ribotype 014/020 but not for PCR ribotype 010. Our results suggest that shoe soles and dog paws could serve for the dissemination of C. difficile spores between households and environment and could contribute to community-relevant sources for C. difficile infection in humans.


Subject(s)
Clostridioides difficile/isolation & purification , Dogs/microbiology , Foot/microbiology , Housing , Shoes , Spores, Bacterial/isolation & purification , Animals , Clostridioides difficile/genetics , DNA, Bacterial/genetics , Humans , Ribotyping , Slovenia , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...