Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Synchrotron Radiat ; 31(Pt 3): 469-477, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38517754

ABSTRACT

Various X-ray techniques are employed to investigate specimens in diverse fields. Generally, scattering and absorption/emission processes occur due to the interaction of X-rays with matter. The output signals from these processes contain structural information and the electronic structure of specimens, respectively. The combination of complementary X-ray techniques improves the understanding of complex systems holistically. In this context, we introduce a multiplex imaging instrument that can collect small-/wide-angle X-ray diffraction and X-ray emission spectra simultaneously to investigate morphological information with nanoscale resolution, crystal arrangement at the atomic scale and the electronic structure of specimens.

2.
Opt Express ; 31(16): 26969-26979, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710545

ABSTRACT

We successfully demonstrated the generation of single-cycle terahertz (THz) pulses through tilted-pulse-front (TPF) pumping using a reflective echelon in a lithium niobate crystal. By optimizing the pump pulse duration using a chirp, we achieved a maximum pump-to-THz conversion efficiency of 0.39%. However, we observed that the saturation behavior began at a relatively low pump energy (0.37 mJ), corresponding to a pump intensity of 22 GW/cm2. To elucidate this behavior, we measured the near- and far-field THz beam profiles and found variations in their beam characteristics, such as the beam size, location, and divergence angle in the plane of the tilted pulse direction, with the pump energy (intensity). This nonlinear behavior is attributed to the reduced effective interaction length, which ultimately leads to the saturation of THz generation. The results obtained from our study suggest that it is feasible to develop an effective THz source using echelon-based TPF pumping while also considering the impact of nonlinear saturation effects.

3.
Nat Chem ; 15(11): 1607-1615, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37563326

ABSTRACT

The photoisomerization reaction of a fluorescent protein chromophore occurs on the ultrafast timescale. The structural dynamics that result from femtosecond optical excitation have contributions from vibrational and electronic processes and from reaction dynamics that involve the crossing through a conical intersection. The creation and progression of the ultrafast structural dynamics strongly depends on optical and molecular parameters. When using X-ray crystallography as a probe of ultrafast dynamics, the origin of the observed nuclear motions is not known. Now, high-resolution pump-probe X-ray crystallography reveals complex sub-ångström, ultrafast motions and hydrogen-bonding rearrangements in the active site of a fluorescent protein. However, we demonstrate that the measured motions are not part of the photoisomerization reaction but instead arise from impulsively driven coherent vibrational processes in the electronic ground state. A coherent-control experiment using a two-colour and two-pulse optical excitation strongly amplifies the X-ray crystallographic difference density, while it fully depletes the photoisomerization process. A coherent control mechanism was tested and confirmed the wave packets assignment.


Subject(s)
Rhodopsin , Vibration , Motion , Hydrogen Bonding
4.
Adv Mater ; 35(36): e2303032, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37391904

ABSTRACT

Ultrafast optical manipulation of magnetic phenomena is an exciting achievement of mankind, expanding one's horizon of knowledge toward the functional nonequilibrium states. The dynamics acting on an extremely short timescale push the detection limits that reveal fascinating light-matter interactions for nonthermal creation of effective magnetic fields. While some cases are benchmarked by emergent transient behaviors, otherwise identifying the nonthermal effects remains challenging. Here, a femtosecond time-resolved resonant magnetic X-ray diffraction experiment is introduced, which uses an X-ray free-electron laser (XFEL) to distinguish between the effective field and the photoinduced thermal effect. It is observed that a multiferroic Y-type hexaferrite exhibits magnetic Bragg peak intensity oscillations manifesting entangled antiferromagnetic (AFM) and ferromagnetic (FM) Fourier components of a coherent AFM magnon. The magnon trajectory constructed in 3D space and time domains is decisive to evince ultrafast field formation preceding the lattice thermalization. A remarkable impact of photoexcitation across the electronic bandgap is directly unraveled, amplifying the photomagnetic coupling that is one of the highest among AFM dielectrics. Leveraging the above-bandgap photoexcitation, this energy-efficient optical process further suggests a novel photomagnetic control of ferroelectricity in multiferroics.

5.
Opt Lett ; 45(13): 3617-3620, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32630913

ABSTRACT

We demonstrate efficient multicycle terahertz pulse generation at 14.6 THz from large-area lithium niobate crystals by using high-energy (up to 2 J) femtosecond Ti:sapphire laser pulses. Such terahertz radiation is produced by phase-matched optical rectification in lithium niobate. Experimentally, we achieve maximal terahertz energy of 0.71 mJ with conversion efficiency of ∼0.04%. Our experimental setup is simple and easily upscalable to produce multi-millijoule, multicycle terahertz radiation with proper lithium niobate crystals.

6.
Opt Express ; 28(14): 21220-21235, 2020 Jul 06.
Article in English | MEDLINE | ID: mdl-32680167

ABSTRACT

We report multicycle, narrowband, terahertz radiation at 14.8 THz produced by phase-matched optical rectification of femtosecond laser pulses in bulk lithium niobate (LiNbO3) crystals. Our experiment and simulation show that the output terahertz energy greatly enhances when the input laser pulse is highly chirped, contrary to a common optical rectification process. We find this abnormal behavior is attributed to a linear electro-optic (EO) effect, in which the laser pulse propagating in LiNbO3 is modulated by the terahertz field it produces, and this in turn drives optical rectification more effectively to produce the terahertz field. This resonant cascading effect can greatly increase terahertz conversion efficiencies when the input laser pulse is properly pre-chirped with additional third order dispersion. We also observe similar multicycle terahertz emission from lithium tantalate (LiTaO3) at 14 THz and barium borate (BBO) at 7 THz, 10.6 THz, and 14.6 THz, all produced by narrowband phase-matched optical rectification.

7.
Opt Express ; 28(8): 11023-11032, 2020 Apr 13.
Article in English | MEDLINE | ID: mdl-32403622

ABSTRACT

We have experimentally demonstrated a simplified method for performing single-shot supercontinuum spectral interferometry (SSSI) that does not require pre-characterization of the probe pulse. The method, originally proposed by D. T. Vu, D. Jang, and K. Y. Kim, uses a genetic algorithm (GA) and as few as two time-delayed pump-probe shots to retrieve the pump-induced phase shift on the probe [Opt. Express26, 20572 (2018)]. We show that the GA is able to successfully retrieve the transient modulations on the probe, and that the error in the retrieved modulation decreases dramatically with the number of shots used. In addition, we propose and demonstrate a practical method that allows SSSI to be done with a single pump-probe shot (again, without the need for pre-characterization of the probe). This simplified method can prove to be immensely useful when performing SSSI with a low-repetition-rate laser source.

8.
Opt Lett ; 44(22): 5634-5637, 2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31730126

ABSTRACT

We demonstrate high-energy terahertz generation from a large-aperture (75-mm diameter) lithium niobate wafer by using a femtosecond laser with energy up to 2 J. This scheme utilizes optical rectification in a bulk lithium niobate crystal, where most terahertz energy is emitted from a thin layer of the rear surface. Despite its simple setup, this scheme can yield 0.19 mJ of terahertz energy with laser-to-terahertz conversion efficiencies of ∼10-4, about 3 times better than ZnTe when pumped at 800 nm. The experimental setup is upscalable for multimillijoule terahertz generation with petawatt laser pumping.

9.
Opt Express ; 27(16): 22663-22673, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510552

ABSTRACT

We present an experimental study on pressure-dependent terahertz generation from two-color femtosecond laser filamentation in various gases. Contrary to short-focusing geometry, we find that long filamentation yields higher terahertz energy at lower gas pressures in most gases. This counter-intuitive phenomenon occurs due to multiple peculiar properties associated with filamentation. In practice, filamentation in low-pressure argon provides a maximum laser-to-terahertz conversion efficiency of 0.1%, about 10 times higher than in atmospheric air. In addition, our pressure-dependent study reveals an anticorrelation between terahertz output energy and local plasma fluorescence brightness. This determines the absolute phase difference between two-color laser fields for maximal terahertz generation, as well as verifies the microscopic mechanism of terahertz generation in two-color laser mixing.

10.
Opt Express ; 26(16): 20572-20581, 2018 Aug 06.
Article in English | MEDLINE | ID: mdl-30119366

ABSTRACT

Single-shot supercontinuum spectral interferometry (SSSI) is an optical technique that can measure ultrafast transients in the complex index of refraction. This method uses chirped supercontinuum reference/probe pulses that need to be pre-characterized prior to use. Conventionally, the spectral phase (or chirp) of those pulses can be determined from a series of phase or spectral measurements taken at various time delays with respect to a pump-induced modulation. Here we propose a novel method to simplify this process and characterize reference/probe pulses up to the third order dispersion from a minimum of 2 snapshots taken at different pump-probe delays. Alternatively, without any pre-characterization, our method can retrieve both unperturbed and perturbed reference/probe phases, including the pump-induced modulation, from 2 time-delayed snapshots. From numerical simulations, we show that our retrieval algorithm is robust and can achieve high accuracy even with 2 snapshots. Without any apparatus modification, our method can be easily applied to any experiment that uses SSSI.

SELECTION OF CITATIONS
SEARCH DETAIL
...