Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Med Image Anal ; 73: 102198, 2021 10.
Article in English | MEDLINE | ID: mdl-34403931

ABSTRACT

Obtaining multiple series of magnetic resonance (MR) images with different contrasts is useful for accurate diagnosis of human spinal conditions. However, this can be time consuming and a burden on both the patient and the hospital. We propose a Bloch equation-based autoencoder regularization generative adversarial network (BlochGAN) to generate a fat saturation T2-weighted (T2 FS) image from T1-weighted (T1-w) and T2-weighted (T2-w) images of human spine. To achieve this, our approach was to utilize the relationship between the contrasts using Bloch equation since it is a fundamental principle of MR physics and serves as a physical basis of each contrasts. BlochGAN properly generated the target-contrast images using the autoencoder regularization based on the Bloch equation to identify the physical basis of the contrasts. BlochGAN consists of four sub-networks: an encoder, a decoder, a generator, and a discriminator. The encoder extracts features from the multi-contrast input images, and the generator creates target T2 FS images using the features extracted from the encoder. The discriminator assists network learning by providing adversarial loss, and the decoder reconstructs the input multi-contrast images and regularizes the learning process by providing reconstruction loss. The discriminator and the decoder are only used in the training process. Our results demonstrate that BlochGAN achieved quantitatively and qualitatively superior performance compared to conventional medical image synthesis methods in generating spine T2 FS images from T1-w, and T2-w images.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Humans
2.
Neural Netw ; 134: 131-142, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33307279

ABSTRACT

Spike sorting refers to the technique of detecting signals generated by single neurons from multi-neuron recordings and is a valuable tool for analyzing the relationships between individual neuronal activity patterns and specific behaviors. Since the precision of spike sorting affects all subsequent analyses, sorting accuracy is critical. Many semi-automatic to fully-automatic spike sorting algorithms have been developed. However, due to unsatisfactory classification accuracy, manual sorting is preferred by investigators despite the intensive time and labor costs. Thus, there still is a strong need for fully automatic spike sorting methods with high accuracy. Various machine learning algorithms have been developed for feature extraction but have yet to show sufficient accuracy for spike sorting. Here we describe a deep learning-based method for extracting features from spike signals using an ensemble of auto-encoders, each with a distinct architecture for distinguishing signals at different levels of resolution. By utilizing ensemble of auto-encoder ensemble, where shallow networks better represent overall signal structure and deep networks better represent signal details, extraction of high-dimensional representative features for improved spike sorting performance is achieved. The model was evaluated on publicly available simulated datasets and single-channel and 4-channel tetrode in vivo datasets. Our model not only classified single-channel spikes with varying degrees of feature similarities and signal to noise levels with higher accuracy, but also more precisely determined the number of source neurons compared to other machine learning methods. The model also demonstrated greater overall accuracy for spike sorting 4-channel tetrode recordings compared to single-channel recordings.


Subject(s)
Algorithms , Deep Learning , Signal Processing, Computer-Assisted , Action Potentials/physiology , Databases, Factual/statistics & numerical data , Machine Learning , Neurons/physiology
3.
Magn Reson Med ; 84(6): 2994-3008, 2020 12.
Article in English | MEDLINE | ID: mdl-32479671

ABSTRACT

PURPOSE: To generate short tau, or short inversion time (TI), inversion recovery (STIR) images from three multi-contrast MR images, without additional scanning, using a deep neural network. METHODS: For simulation studies, we used multi-contrast simulation images. For in-vivo studies, we acquired knee MR images including 288 slices of T1 -weighted (T1 -w), T2 -weighted (T2 -w), gradient-recalled echo (GRE), and STIR images taken from 12 healthy volunteers. Our MR image synthesis method generates a new contrast MR image from multi-contrast MR images. We used a deep neural network to identify the complex relationships between MR images that show various contrasts for the same tissues. Our contrast-conversion deep neural network (CC-DNN) is an end-to-end architecture that trains the model to create one image from three (T1 -w, T2 -w, and GRE images). We propose a new loss function to take into account intensity differences, misregistration, and local intensity variations. The CC-DNN-generated STIR images were evaluated with four quantitative evaluation metrics, including mean squared error, peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and multi-scale SSIM (MS-SSIM). Furthermore, a subjective evaluation was performed by musculoskeletal radiologists. RESULTS: Our method showed improved results in all quantitative evaluations compared with other methods and received the highest scores in subjective evaluations by musculoskeletal radiologists. CONCLUSION: This study suggests the feasibility of our method for generating STIR sequence images without additional scanning that offered a potential alternative to the STIR pulse sequence when additional scanning is limited or STIR artifacts are severe.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Humans , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...