Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
2.
JAMA Otolaryngol Head Neck Surg ; 150(1): 22-29, 2024 Jan 01.
Article in English | MEDLINE | ID: mdl-37971771

ABSTRACT

Importance: Consumer-level sleep analysis technologies have the potential to revolutionize the screening for obstructive sleep apnea (OSA). However, assessment of OSA prediction models based on in-home recording data is usually performed concurrently with level 1 in-laboratory polysomnography (PSG). Establishing the predictability of OSA using sound data recorded from smartphones based on level 2 PSG at home is important. Objective: To validate the performance of a prediction model for OSA using breathing sound recorded from smartphones in conjunction with level 2 PSG at home. Design, Setting, and Participants: This diagnostic study followed a prospective design, involving participants who underwent unattended level 2 home PSG. Breathing sounds were recorded during sleep using 2 smartphones, one with an iOS operating system and the other with an Android operating system, simultaneously with home PSG in participants' own home environment. Participants were 19 years and older, slept alone, and had either been diagnosed with OSA or had no previous diagnosis. The study was performed between February 2022 and February 2023. Main Outcomes and Measures: Sensitivity, specificity, positive predictive value, negative predictive value, and accuracy of the predictive model based on the recorded breathing sounds. Results: Of the 101 participants included during the study duration, the mean (SD) age was 48.3 (14.9) years, and 51 (50.5%) were female. For the iOS smartphone, the sensitivity values at apnea-hypopnea index (AHI) levels of 5, 15, and 30 per hour were 92.6%, 90.9%, and 93.3%, respectively, with specificities of 84.3%, 94.4%, and 94.4%, respectively. Similarly, for the Android smartphone, the sensitivity values at AHI levels of 5, 15, and 30 per hour were 92.2%, 90.0%, and 92.9%, respectively, with specificities of 84.0%, 94.4%, and 94.3%, respectively. The accuracy for the iOS smartphone was 88.6%, 93.3%, and 94.3%, respectively, and for the Android smartphone was 88.1%, 93.1%, and 94.1% at AHI levels of 5, 15, and 30 per hour, respectively. Conclusions and Relevance: This diagnostic study demonstrated the feasibility of predicting OSA with a reasonable level of accuracy using breathing sounds obtained by smartphones during sleep at home.


Subject(s)
Sleep Apnea, Obstructive , Smartphone , Humans , Female , Middle Aged , Male , Polysomnography , Respiratory Sounds , Sleep Apnea, Obstructive/diagnosis , Sleep
3.
J Med Internet Res ; 25: e46216, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37261889

ABSTRACT

BACKGROUND: The growing public interest and awareness regarding the significance of sleep is driving the demand for sleep monitoring at home. In addition to various commercially available wearable and nearable devices, sound-based sleep staging via deep learning is emerging as a decent alternative for their convenience and potential accuracy. However, sound-based sleep staging has only been studied using in-laboratory sound data. In real-world sleep environments (homes), there is abundant background noise, in contrast to quiet, controlled environments such as laboratories. The use of sound-based sleep staging at homes has not been investigated while it is essential for practical use on a daily basis. Challenges are the lack of and the expected huge expense of acquiring a sufficient size of home data annotated with sleep stages to train a large-scale neural network. OBJECTIVE: This study aims to develop and validate a deep learning method to perform sound-based sleep staging using audio recordings achieved from various uncontrolled home environments. METHODS: To overcome the limitation of lacking home data with known sleep stages, we adopted advanced training techniques and combined home data with hospital data. The training of the model consisted of 3 components: (1) the original supervised learning using 812 pairs of hospital polysomnography (PSG) and audio recordings, and the 2 newly adopted components; (2) transfer learning from hospital to home sounds by adding 829 smartphone audio recordings at home; and (3) consistency training using augmented hospital sound data. Augmented data were created by adding 8255 home noise data to hospital audio recordings. Besides, an independent test set was built by collecting 45 pairs of overnight PSG and smartphone audio recording at homes to examine the performance of the trained model. RESULTS: The accuracy of the model was 76.2% (63.4% for wake, 64.9% for rapid-eye movement [REM], and 83.6% for non-REM) for our test set. The macro F1-score and mean per-class sensitivity were 0.714 and 0.706, respectively. The performance was robust across demographic groups such as age, gender, BMI, or sleep apnea severity (accuracy 73.4%-79.4%). In the ablation study, we evaluated the contribution of each component. While the supervised learning alone achieved accuracy of 69.2% on home sound data, adding consistency training to the supervised learning helped increase the accuracy to a larger degree (+4.3%) than adding transfer learning (+0.1%). The best performance was shown when both transfer learning and consistency training were adopted (+7.0%). CONCLUSIONS: This study shows that sound-based sleep staging is feasible for home use. By adopting 2 advanced techniques (transfer learning and consistency training) the deep learning model robustly predicts sleep stages using sounds recorded at various uncontrolled home environments, without using any special equipment but smartphones only.


Subject(s)
Deep Learning , Smartphone , Humans , Sound Recordings , Home Environment , Sleep Stages , Sleep
4.
J Med Internet Res ; 25: e44818, 2023 02 22.
Article in English | MEDLINE | ID: mdl-36811943

ABSTRACT

BACKGROUND: Multinight monitoring can be helpful for the diagnosis and management of obstructive sleep apnea (OSA). For this purpose, it is necessary to be able to detect OSA in real time in a noisy home environment. Sound-based OSA assessment holds great potential since it can be integrated with smartphones to provide full noncontact monitoring of OSA at home. OBJECTIVE: The purpose of this study is to develop a predictive model that can detect OSA in real time, even in a home environment where various noises exist. METHODS: This study included 1018 polysomnography (PSG) audio data sets, 297 smartphone audio data sets synced with PSG, and a home noise data set containing 22,500 noises to train the model to predict breathing events, such as apneas and hypopneas, based on breathing sounds that occur during sleep. The whole breathing sound of each night was divided into 30-second epochs and labeled as "apnea," "hypopnea," or "no-event," and the home noises were used to make the model robust to a noisy home environment. The performance of the prediction model was assessed using epoch-by-epoch prediction accuracy and OSA severity classification based on the apnea-hypopnea index (AHI). RESULTS: Epoch-by-epoch OSA event detection showed an accuracy of 86% and a macro F1-score of 0.75 for the 3-class OSA event detection task. The model had an accuracy of 92% for "no-event," 84% for "apnea," and 51% for "hypopnea." Most misclassifications were made for "hypopnea," with 15% and 34% of "hypopnea" being wrongly predicted as "apnea" and "no-event," respectively. The sensitivity and specificity of the OSA severity classification (AHI≥15) were 0.85 and 0.84, respectively. CONCLUSIONS: Our study presents a real-time epoch-by-epoch OSA detector that works in a variety of noisy home environments. Based on this, additional research is needed to verify the usefulness of various multinight monitoring and real-time diagnostic technologies in the home environment.


Subject(s)
Sleep Apnea Syndromes , Sleep Apnea, Obstructive , Humans , Respiratory Sounds , Sleep Apnea, Obstructive/diagnosis , Sleep , Algorithms
5.
Front Comput Neurosci ; 16: 1037976, 2022.
Article in English | MEDLINE | ID: mdl-36465962

ABSTRACT

Among the main features of biological intelligence are energy efficiency, capacity for continual adaptation, and risk management via uncertainty quantification. Neuromorphic engineering has been thus far mostly driven by the goal of implementing energy-efficient machines that take inspiration from the time-based computing paradigm of biological brains. In this paper, we take steps toward the design of neuromorphic systems that are capable of adaptation to changing learning tasks, while producing well-calibrated uncertainty quantification estimates. To this end, we derive online learning rules for spiking neural networks (SNNs) within a Bayesian continual learning framework. In it, each synaptic weight is represented by parameters that quantify the current epistemic uncertainty resulting from prior knowledge and observed data. The proposed online rules update the distribution parameters in a streaming fashion as data are observed. We instantiate the proposed approach for both real-valued and binary synaptic weights. Experimental results using Intel's Lava platform show the merits of Bayesian over frequentist learning in terms of capacity for adaptation and uncertainty quantification.

6.
Nat Sci Sleep ; 14: 1187-1201, 2022.
Article in English | MEDLINE | ID: mdl-35783665

ABSTRACT

Purpose: Nocturnal sounds contain numerous information and are easily obtainable by a non-contact manner. Sleep staging using nocturnal sounds recorded from common mobile devices may allow daily at-home sleep tracking. The objective of this study is to introduce an end-to-end (sound-to-sleep stages) deep learning model for sound-based sleep staging designed to work with audio from microphone chips, which are essential in mobile devices such as modern smartphones. Patients and Methods: Two different audio datasets were used: audio data routinely recorded by a solitary microphone chip during polysomnography (PSG dataset, N=1154) and audio data recorded by a smartphone (smartphone dataset, N=327). The audio was converted into Mel spectrogram to detect latent temporal frequency patterns of breathing and body movement from ambient noise. The proposed neural network model learns to first extract features from each 30-second epoch and then analyze inter-epoch relationships of extracted features to finally classify the epochs into sleep stages. Results: Our model achieved 70% epoch-by-epoch agreement for 4-class (wake, light, deep, REM) sleep stage classification and robust performance across various signal-to-noise conditions. The model performance was not considerably affected by sleep apnea or periodic limb movement. External validation with smartphone dataset also showed 68% epoch-by-epoch agreement. Conclusion: The proposed end-to-end deep learning model shows potential of low-quality sounds recorded from microphone chips to be utilized for sleep staging. Future study using nocturnal sounds recorded from mobile devices at home environment may further confirm the use of mobile device recording as an at-home sleep tracker.

7.
IEEE Trans Neural Netw Learn Syst ; 33(5): 2034-2044, 2022 05.
Article in English | MEDLINE | ID: mdl-35089867

ABSTRACT

Spiking neural networks (SNNs) capture some of the efficiency of biological brains for inference and learning via the dynamic, online, and event-driven processing of binary time series. Most existing learning algorithms for SNNs are based on deterministic neuronal models, such as leaky integrate-and-fire, and rely on heuristic approximations of backpropagation through time that enforces constraints such as locality. In contrast, probabilistic SNN models can be trained directly via principled online, local, and update rules that have proven to be particularly effective for resource-constrained systems. This article investigates another advantage of probabilistic SNNs, namely, their capacity to generate independent outputs when queried over the same input. It is shown that the multiple generated output samples can be used during inference to robustify decisions and to quantify uncertainty-a feature that deterministic SNN models cannot provide. Furthermore, they can be leveraged for training in order to obtain more accurate statistical estimates of the log-loss training criterion and its gradient. Specifically, this article introduces an online learning rule based on generalized expectation-maximization (GEM) that follows a three-factor form with global learning signals and is referred to as GEM-SNN. Experimental results on structured output memorization and classification on a standard neuromorphic dataset demonstrate significant improvements in terms of log-likelihood, accuracy, and calibration when increasing the number of samples used for inference and training.


Subject(s)
Education, Distance , Neural Networks, Computer , Algorithms , Brain/physiology , Neurons/physiology
8.
J Med Chem ; 64(15): 10934-10950, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34309393

ABSTRACT

Previously, we reported that immunoproteasome (iP)-targeting linear peptide epoxyketones improve cognitive function in mouse models of Alzheimer's disease (AD) in a manner independent of amyloid ß. However, these compounds' clinical prospect for AD is limited due to potential issues, such as poor brain penetration and metabolic instability. Here, we report the development of iP-selective macrocyclic peptide epoxyketones prepared by a ring-closing metathesis reaction between two terminal alkenes attached at the P2 and P3/P4 positions of linear counterparts. We show that a lead macrocyclic compound DB-60 (20) effectively inhibits the catalytic activity of iP in ABCB1-overexpressing cells (IC50: 105 nM) and has metabolic stability superior to its linear counterpart. DB-60 (20) also lowered the serum levels of IL-1α and ameliorated cognitive deficits in Tg2576 mice. The results collectively suggest that macrocyclic peptide epoxyketones have improved CNS drug properties than their linear counterparts and offer promising potential as an AD drug candidate.


Subject(s)
Alzheimer Disease/drug therapy , Macrocyclic Compounds/pharmacology , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , Alzheimer Disease/metabolism , Animals , Cells, Cultured , Dose-Response Relationship, Drug , Humans , Macrocyclic Compounds/chemical synthesis , Macrocyclic Compounds/chemistry , Mice , Mice, Inbred C57BL , Mice, Transgenic , Molecular Structure , Proteasome Inhibitors/chemical synthesis , Proteasome Inhibitors/chemistry , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...