Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 11(31): 27735-27742, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-31264827

ABSTRACT

Performance degradation generated by reverse current flow during fuel cell shut-down/start-up is a big challenge for commercialization of polymer electrolyte membrane fuel cells in automobile applications. Under transient operating conditions, the formation of H2/O2 boundaries on Pt surfaces and the occurrence of undesired oxygen reduction reaction (ORR) in an anode cause severe degradation of carbon supports and Pt catalysts in a cathode because of an increase of the cathode potential up to ∼1.5 V. Herein, to directly prevent the formation of H2/O2 boundaries in the anode, we propose a unique metal-carbon hybrid core-shell anode catalyst having Pt nanoparticles encapsulated in nanoporous carbon shells for selective H2 permeation. This hybrid catalyst exhibits high hydrogen oxidation reaction (HOR) selectivity along with fully subdued ORR activity during long-term operation because of the excellent stability of the carbon molecular sieves. Furthermore, the HOR-selective catalyst effectively suppresses the reverse current flow in a single cell under shut-down/start-up conditions.

2.
Nanoscale ; 11(11): 5038-5047, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30839982

ABSTRACT

N-Doped carbon materials have been intensively studied to replace Pt catalysts for the oxygen reduction reaction (ORR) in anion exchange membrane fuel cells (AEMFCs). However, the low doping level in these catalysts results in a limited number of ORR active sites, so high catalyst loading is still required. Hence, the electrode thickness becomes extra thick, causing large mass transfer resistance in AEMFCs. In this study, we propose a unique hybrid catalyst concept utilizing charge redistribution at the graphene-transition metal interface to modify the electronic structure of graphene and simultaneously create multiple carbon active sites. The hybrid catalyst consists of n-type nano-graphene shells (NGS) three-dimensionally coated on the surface of transition metal nanoparticles highly dispersed on carbon supports. The n-type NGS catalysts efficiently facilitate oxygen adsorption owing to facile charge transfer from the metal nanoparticles underneath and provide abundant active carbon sites owing to their structural benefits. As a result, despite the same catalyst loading, the NGS catalyst shows high ORR activity and greater durability than a carbon-supported Pt (Pt/C) catalyst.

3.
Nutr Res Pract ; 5(1): 20-7, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21487492

ABSTRACT

We conducted this study to examine the effects of safflower seed granular tea containing physiologically active polyphenols on antioxidative activities and bone metabolism. Forty postmenopausal women ages 49 to 64-years were recruited from Daegu and Gyeongbuk and were randomly assigned to either a safflower tea supplement (Saf-tea) group (n = 27) or a placebo group (n = 13). The Saf-tea group received 20 g of safflower seed granule tea per day containing a 13% ethanol extract of defatted safflower seeds, whereas the placebo group received a similar type of tea that lacked the ethanol extract. No significant changes in nutrient intake for either the placebo or Saf-tea groups were observed before or after the study period, except vitamin A intake increased after 6 months in the Saf-tea group. Dietary phytoestrogen intakes were similar in the Saf-tea group (60.3 mg) and placebo group (52.5 mg). Significant increases in plasma genistein and enterolactone were observed in the Saf-tea group. After 6 months of supplementation, serum levels of antioxidant vitamins such as α-tocopherol and ascorbic acid increased significantly, and TBARS levels decreased in the Saf-tea group compared to the placebo group. Serum osteocalcin levels were reduced (P < 0.05) in the Saf-tea group after 6 months, whereas serum osteocalcin did not change in the placebo group. Urinary deoxypyridinoline/creatinine excretion was not different between the two groups at baseline, and did not change in either group after 6 months. Bone mineral density decreased significantly in the placebo group (P < 0.01) but not in the supplemented group. It was concluded that polyphenols (72 mg/day), including serotonin derivatives, in the Saf-tea had both antioxidant and potential bone protecting effects in postmenopausal women without liver toxicity.

4.
Nutr Res Pract ; 1(4): 305-12, 2007.
Article in English | MEDLINE | ID: mdl-20368955

ABSTRACT

A group of 101 women, aged 40-65 years consisted of 48 premenopausal subjects and 53 postmenopausal ones living in Daegu and Gyeongbuk area in Korea were evaluated with their general characteristics, lifestyle factors, nutrient and phytoestrogen intakes, blood and urinary indices concerning antioxidant status and bone metabolism. Body mass index (BMI), waist hip ratio (WHR) and systolic blood pressure (SBP) of the postmenopausal women were significantly higher (23.8, 0.86, and 126.9 mmHg, respectively) than those of the premenopausal women (22.6, 0.82, and 115.9 mmHg; respectively). Nutrient intakes of the postmenopausal and premenopausal groups were not different except lower fat intake and higher dietary fiber and iron intakes in the postmenopausal group. Daily total phytoestrogen intake was significantly higher in the postmenopausal group (48.54 mg) than the premenopausal (31.41 mg) and was resulted mostly from higher intakes of daidzein and genistein from soy and soy products (45.42 mg vs 28.91 mg). Serum genistein level and excretion of enterolactone, major lignan metabolite, were not very different between the two groups. Serum retinal and alpha- tocopherol levels were higher in the postmenopausal group but TBARS levels were not different between the two groups. Serum osteocalcin (7.18 ng/mL) and urinary deoxypyridinoline (7.15 nmol/mmol creatinine), in the postmenopausal group were significantly higher than those in the premenopausal group (4.80 ng/mL, 5.95 nmol/mmol creatinine). Urinary excretion of enterolactone was positively correlated with serum osetocalcin in premenopausal women and serum genistein negatively correlated with the urinary DPD in postmenopausal women. Dietary phytoestrogen intake was negatively correlated with serum level of TBARS in all subjects. It is concluded that the effect of total phytoestrogen intake is beneficial on body antioxidant status in all middle-aged women regardless of menopause but the effect on bone metabolism appears different by the type of the phytoestrogen and the menopausal state.

SELECTION OF CITATIONS
SEARCH DETAIL
...