Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 46
Filter
1.
Cell Mol Gastroenterol Hepatol ; 13(3): 925-947, 2022.
Article in English | MEDLINE | ID: mdl-34890841

ABSTRACT

BACKGROUND & AIMS: Sphingosine 1-phosphate receptors (S1PRs) are a group of G-protein-coupled receptors that confer a broad range of functional effects in chronic inflammatory and metabolic diseases. S1PRs also may mediate the development of nonalcoholic steatohepatitis (NASH), but the specific subtypes involved and the mechanism of action are unclear. METHODS: We investigated which type of S1PR isoforms is activated in various murine models of NASH. The mechanism of action of S1PR4 was examined in hepatic macrophages isolated from high-fat, high-cholesterol diet (HFHCD)-fed mice. We developed a selective S1PR4 functional antagonist by screening the fingolimod (2-amino-2-[2-(4- n -octylphenyl)ethyl]-1,3- propanediol hydrochloride)-like sphingolipid-focused library. RESULTS: The livers of various mouse models of NASH as well as hepatic macrophages showed high expression of S1pr4. Moreover, in a cohort of NASH patients, expression of S1PR4 was 6-fold higher than those of healthy controls. S1pr4+/- mice were protected from HFHCD-induced NASH and hepatic fibrosis without changes in steatosis. S1pr4 depletion in hepatic macrophages inhibited lipopolysaccharide-mediated Ca++ release and deactivated the Nod-like receptor pyrin domain-containning protein 3 (NLRP3) inflammasome. S1P increased the expression of S1pr4 in hepatic macrophages and activated NLRP3 inflammasome through inositol trisphosphate/inositol trisphosphate-receptor-dependent [Ca++] signaling. To further clarify the biological function of S1PR4, we developed SLB736, a novel selective functional antagonist of SIPR4. Similar to S1pr4+/- mice, administration of SLB736 to HFHCD-fed mice prevented the development of NASH and hepatic fibrosis, but not steatosis, by deactivating the NLRP3 inflammasome. CONCLUSIONS: S1PR4 may be a new therapeutic target for NASH that mediates the activation of NLRP3 inflammasome in hepatic macrophages.


Subject(s)
Inflammasomes , Non-alcoholic Fatty Liver Disease , Animals , Humans , Inflammasomes/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein , Non-alcoholic Fatty Liver Disease/drug therapy , Sphingosine-1-Phosphate Receptors
2.
Biomed Pharmacother ; 145: 112463, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34839258

ABSTRACT

Heart failure (HF) is a leading cause of disease and death from cardiovascular diseases, with cardiovascular diseases accounting for the highest cases of deaths worldwide. The reality is that the quality-of-life survival for those suffering HF remains poor with 45-60% reported deaths within five years. Furthermore, cardiovascular disease is the foremost cause of mortality and disability in people with type 2 diabetes mellitus (T2DM), with T2DM patients having a two-fold greater risk of developing heart failure. The number of T2DM affected persons only continues to surge as there are more than 400 million adults affected by diabetes and an estimated 64.3 million affected by heart failure globally (1). In order to cater to the demands of modern society, the medical field has continuously improved upon the standards for clinical management and its therapeutic approaches. For this purpose, in this review, we aim to provide an overview of the current updates regarding heart failure, to include both heart failure with reduced ejection fraction (HFrEF) and heart failure with preserved ejection fraction (HFpEF) and their respective treatments, while also diving further into heart failure and its correlation with diabetes and diabetic cardiomyopathy and their respective therapeutic approaches.


Subject(s)
Diabetes Mellitus, Type 2/complications , Diabetic Cardiomyopathies/therapy , Heart Failure , Disease Management , Heart Failure/etiology , Heart Failure/physiopathology , Heart Failure/therapy , Humans
3.
Diabetes Metab J ; 45(5): 675-683, 2021 09.
Article in English | MEDLINE | ID: mdl-32794385

ABSTRACT

BACKGROUND: Only few studies have shown the efficacy and safety of glucose-control strategies using the quadruple drug combination. Therefore, the aim of the present study was to investigate the usefulness of the quadruple combination therapy with oral hypoglycemic agents (OHAs) in patients with uncontrolled type 2 diabetes mellitus (T2DM). METHODS: From March 2014 to December 2018, data of patients with T2DM, who were treated with quadruple hypoglycemic medications for over 12 months in 11 hospitals in South Korea, were reviewed retrospectively. We compared glycosylated hemoglobin (HbA1c) levels before and 12 months after quadruple treatment with OHAs. The safety, maintenance rate, and therapeutic patterns after failure of the quadruple therapy were also evaluated. RESULTS: In total, 357 patients were enrolled for quadruple OHA therapy, and the baseline HbA1c level was 9.0%±1.3% (74.9±14.1 mmol/mol). After 12 months, 270 patients (75.6%) adhered to the quadruple therapy and HbA1c was significantly reduced from 8.9%±1.2% to 7.8%±1.3% (mean change, -1.1%±1.2%; P<0.001). The number of patients with HbA1c <7% increased significantly from 5 to 68 (P<0.005). In addition, lipid profiles and liver enzyme levels were also improved whereas no changes in body weight. There was no significant safety issue in patients treated with quadruple OHA therapy. CONCLUSION: This study shows the therapeutic efficacy of the quadruple OHA regimen T2DM and demonstrates that it can be an option for the management of T2DM patients who cannot use insulin or reject injectable therapy.


Subject(s)
Diabetes Mellitus, Type 2 , Blood Glucose , Diabetes Mellitus, Type 2/drug therapy , Glycated Hemoglobin/analysis , Humans , Hypoglycemic Agents/adverse effects , Retrospective Studies
4.
Autophagy ; 17(5): 1205-1221, 2021 05.
Article in English | MEDLINE | ID: mdl-32400277

ABSTRACT

Although macroautophagy/autophagy deficiency causes degenerative diseases, the deletion of essential autophagy genes in adipocytes paradoxically reduces body weight. Brown adipose tissue (BAT) plays an important role in body weight regulation and metabolic control. However, the key cellular mechanisms that maintain BAT function remain poorly understood. in this study, we showed that global or brown adipocyte-specific deletion of pink1, a Parkinson disease-related gene involved in selective mitochondrial autophagy (mitophagy), induced BAT dysfunction, and obesity-prone type in mice. Defective mitochondrial function is among the upstream signals that activate the NLRP3 inflammasome. NLRP3 was induced in brown adipocyte precursors (BAPs) from pink1 knockout (KO) mice. Unexpectedly, NLRP3 induction did not induce canonical inflammasome activity. Instead, NLRP3 induction led to the differentiation of pink1 KO BAPs into white-like adipocytes by increasing the expression of white adipocyte-specific genes and repressing the expression of brown adipocyte-specific genes. nlrp3 deletion in pink1 knockout mice reversed BAT dysfunction. Conversely, adipose tissue-specific atg7 KO mice showed significantly lower expression of Nlrp3 in their BAT. Overall, our data suggest that the role of mitophagy is different from general autophagy in regulating adipose tissue and whole-body energy metabolism. Our results uncovered a new mitochondria-NLRP3 pathway that induces BAT dysfunction. The ability of the nlrp3 knockouts to rescue BAT dysfunction suggests the transcriptional function of NLRP3 as an unexpected, but a quite specific therapeutic target for obesity-related metabolic diseases.Abbreviations: ACTB: actin, beta; BAPs: brown adipocyte precursors; BAT: brown adipose tissue; BMDMs: bone marrow-derived macrophages; CASP1: caspase 1; CEBPA: CCAAT/enhancer binding protein (C/EBP), alpha; ChIP: chromatin immunoprecipitation; EE: energy expenditure; HFD: high-fat diet; IL1B: interleukin 1 beta; ITT: insulin tolerance test; KO: knockout; LPS: lipopolysaccharide; NLRP3: NLR family, pyrin domain containing 3; PINK1: PTEN induced putative kinase 1; PRKN: parkin RBR E3 ubiquitin protein ligase; RD: regular diet; ROS: reactive oxygen species; RT: room temperature; UCP1: uncoupling protein 1 (mitochondrial, proton carrier); WT: wild-type.


Subject(s)
Adipose Tissue, Brown/metabolism , Autophagy/physiology , Inflammasomes/metabolism , Mitophagy/physiology , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Adipocytes/metabolism , Animals , Energy Metabolism/physiology , Mice, Knockout , Mitochondria/metabolism , Mitophagy/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Reactive Oxygen Species/metabolism
5.
Gut ; 70(10): 1954-1964, 2021 10.
Article in English | MEDLINE | ID: mdl-33208407

ABSTRACT

OBJECTIVE: Lipotoxic hepatocyte injury is a primary event in non-alcoholic steatohepatitis (NASH), but the mechanisms of lipotoxicity are not fully defined. Sphingolipids and free cholesterol (FC) mediate hepatocyte injury, but their link in NASH has not been explored. We examined the role of free cholesterol and sphingomyelin synthases (SMSs) that generate sphingomyelin (SM) and diacylglycerol (DAG) in hepatocyte pyroptosis, a specific form of programmed cell death associated with inflammasome activation, and NASH. DESIGN: Wild-type C57BL/6J mice were fed a high fat and high cholesterol diet (HFHCD) to induce NASH. Hepatic SMS1 and SMS2 expressions were examined in various mouse models including HFHCD-fed mice and patients with NASH. Pyroptosis was estimated by the generation of the gasdermin-D N-terminal fragment. NASH susceptibility and pyroptosis were examined following knockdown of SMS1, protein kinase Cδ (PKCδ), or the NLR family CARD domain-containing protein 4 (NLRC4). RESULTS: HFHCD increased the hepatic levels of SM and DAG while decreasing the level of phosphatidylcholine. Hepatic expression of Sms1 but not Sms2 was higher in mouse models and patients with NASH. FC in hepatocytes induced Sms1 expression, and Sms1 knockdown prevented HFHCD-induced NASH. DAG produced by SMS1 activated PKCδ and NLRC4 inflammasome to induce hepatocyte pyroptosis. Depletion of Nlrc4 prevented hepatocyte pyroptosis and the development of NASH. Conditioned media from pyroptotic hepatocytes activated the NOD-like receptor family pyrin domain containing 3 inflammasome (NLRP3) in Kupffer cells, but Nlrp3 knockout mice were not protected against HFHCD-induced hepatocyte pyroptosis. CONCLUSION: SMS1 mediates hepatocyte pyroptosis through a novel DAG-PKCδ-NLRC4 axis and holds promise as a therapeutic target for NASH.


Subject(s)
Hepatocytes/enzymology , Non-alcoholic Fatty Liver Disease/enzymology , Pyroptosis , Transferases (Other Substituted Phosphate Groups)/metabolism , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred C57BL
7.
Islets ; 12(4): 87-98, 2020 07 03.
Article in English | MEDLINE | ID: mdl-32673151

ABSTRACT

INTRODUCTION: Melatonin is a hormone known as having very strong anti-oxidant property. Senescence is a biological state characterized by the loss of cell replication and the changes consisting of a pro-inflammatory phenotype, leading to Senescence Associated Secretory Phenotype (SASP) which is now regarded as one of the fundamental processes of many degenerative diseases. Increased cell division count induces cell senescence via DNA damage in response to elevated Reactive Oxygen Species (ROS). We wanted to test whether melatonin could reduce apoptosis and stress induced premature pancreatic ß-cell senescence induced by glucotoxicity and glucolipotoxicity. MATERIALS AND METHOD: Cultured rodent pancreatic ß-cell line (INS-1 cell) was used. Glucotoxicity (HG: hyperglycemia) and glucolipotoxicity (HGP: hyperglycemia with palmitate) were induced by hyperglycemia and the addition of palmitate. The degrees of the senescence were measured by SA-ß-Gal and P16lnk4A staining along with the changes of cell viabilities, cell cycle-related protein and gene expressions, endogenous anti-oxidant defense enzymes, and Glucose Stimulated Insulin Secretion (GSIS), before and after melatonin treatment. RESULTS: Cultured INS-1 cells in HG and HGP conditions revealed accelerated senescence, increased apoptosis, cell cycle arrest, compromised endogenous anti-oxidant defense, and impaired glucose-stimulated insulin secretion. Melatonin decreased apoptosis and expressions of proteins related to senescence, increase the endogenous anti-oxidant defense, and improved glucose-stimulated insulin secretion. CONCLUSION: Melatonin protected pancreatic ß-cell from apoptosis, decreased expressions of the markers related to the accelerated senescence, and improved the biological deteriorations induced by glucotoxicity and glucolipotoxicity.


Subject(s)
Apoptosis/drug effects , Cellular Senescence/drug effects , Insulin-Secreting Cells/drug effects , Melatonin/pharmacology , Animals , Blotting, Western , Cell Cycle/drug effects , Cell Line, Tumor , Hyperglycemia/metabolism , Insulin/metabolism , Insulin-Secreting Cells/metabolism , Insulin-Secreting Cells/pathology , Rats
8.
Int J Mol Sci ; 20(24)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842522

ABSTRACT

Diabetes mellitus is associated with cardiovascular, ophthalmic, and renal comorbidities. Among these, diabetic cardiomyopathy (DCM) causes the most severe symptoms and is considered to be a major health problem worldwide. Exercise is widely known as an effective strategy for the prevention and treatment of many chronic diseases. Importantly, the onset of complications arising due to diabetes can be delayed or even prevented by exercise. Regular exercise is reported to have positive effects on diabetes mellitus and the development of DCM. The protective effects of exercise include prevention of cardiac apoptosis, fibrosis, oxidative stress, and microvascular diseases, as well as improvement in cardiac mitochondrial function and calcium regulation. This review summarizes the recent scientific findings to describe the potential mechanisms by which exercise may prevent DCM and heart failure.


Subject(s)
Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/therapy , Exercise Therapy , Exercise , Animals , Biomarkers , Clinical Studies as Topic , Diabetic Cardiomyopathies/metabolism , Diabetic Cardiomyopathies/physiopathology , Exercise Therapy/methods , Humans , Myocardium/metabolism , Oxidative Stress
9.
Exp Mol Med ; 51(7): 1-14, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31285429

ABSTRACT

The administration of mesenchymal stem cells (MSCs) was shown to attenuate overt as well as early diabetic nephropathy in rodents, but the underlying mechanism of this beneficial effect is largely unknown. Inflammation and mitochondrial dysfunction are major pathogenic factors in diabetic nephropathy. In this study, we found that the repeated administration of MSCs prevents albuminuria and injury to tubular epithelial cells (TECs), an important element in the progression of diabetic nephropathy, by improving mitochondrial function. The expression of M1 macrophage markers was significantly increased in diabetic kidneys compared with that in control kidneys. Interestingly, the expression of arginase-1 (Arg1), an important M2 macrophage marker, was reduced in diabetic kidneys and increased by MSC treatment. In cultured TECs, conditioned media from lipopolysaccharide-activated macrophages reduced peroxisomal proliferator-activated receptor gamma coactivator 1α (Pgc1a) expression and impaired mitochondrial function. The coculture of macrophages with MSCs increased and decreased the expression of Arg1 and M1 markers, respectively. Treatment with conditioned media from cocultured macrophages prevented activated macrophage-induced mitochondrial dysfunction in TECs. In the absence of MSC coculture, Arg1 overexpression in macrophages reversed Pgc1a suppression in TECs. These observations suggest that MSCs prevent the progression of diabetic nephropathy by reversing mitochondrial dysfunction in TECs via the induction of Arg1 in macrophages.


Subject(s)
Albuminuria/prevention & control , Arginase/metabolism , Diabetes Complications/prevention & control , Diabetic Nephropathies/prevention & control , Mesenchymal Stem Cells/metabolism , Animals , Arginase/genetics , Cell Line , Cord Blood Stem Cell Transplantation , Diabetic Nephropathies/metabolism , Diabetic Nephropathies/pathology , Disease Progression , Epithelial Cells/metabolism , Epithelial Cells/pathology , Kidney/metabolism , Kidney/pathology , Lipopolysaccharides/metabolism , Macrophages/metabolism , Male , Mesenchymal Stem Cell Transplantation , Mice , Mitochondria/metabolism , RAW 264.7 Cells , Reactive Oxygen Species/metabolism
10.
Diabetes Metab J ; 43(3): 247-256, 2019 06.
Article in English | MEDLINE | ID: mdl-30968618

ABSTRACT

Adipose tissue inflammation is considered a major contributing factor in the development of obesity-associated insulin resistance and cardiovascular diseases. However, the cause of adipose tissue inflammation is presently unclear. The role of mitochondria in white adipocytes has long been neglected because of their low abundance. However, recent evidence suggests that mitochondria are essential for maintaining metabolic homeostasis in white adipocytes. In a series of recent studies, we found that mitochondrial function in white adipocytes is essential to the synthesis of adiponectin, which is the most abundant adipokine synthesized from adipocytes, with many favorable effects on metabolism, including improvement of insulin sensitivity and reduction of atherosclerotic processes and systemic inflammation. From these results, we propose a new hypothesis that mitochondrial dysfunction in adipocytes is a primary cause of adipose tissue inflammation and compared this hypothesis with a prevailing concept that "adipose tissue hypoxia" may underlie adipose tissue dysfunction in obesity. Recent studies have emphasized the role of the mitochondrial quality control mechanism in maintaining mitochondrial function. Future studies are warranted to test whether an inadequate mitochondrial quality control mechanism is responsible for mitochondrial dysfunction in adipocytes and adipose tissue inflammation.


Subject(s)
Adipocytes/metabolism , Inflammation/metabolism , Mitochondria/metabolism , Adiponectin/metabolism , Adipose Tissue, White/metabolism , Animals , Humans , Insulin Resistance
SELECTION OF CITATIONS
SEARCH DETAIL