Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 2024 Aug 23.
Article in English | MEDLINE | ID: mdl-39177148

ABSTRACT

Proton exchange membrane fuel cells (PEMFCs) for automotive applications are required to achieve mechanical reliability at various temperatures ranging from subfreezing to 80 °C. The thermal behavior of the electrode should be considered at the initial design stage to design a robust automotive fuel cell electrode. Recently, a behavior different from that of the bulk state has been reported for ionomers with a few nanometers of thickness. Therefore, the intrinsic thermal behavior of ionomer films with thicknesses from micrometers to nanometers is quantitatively investigated in this study. By introducing the fabrication of a pseudo-freestanding Nafion thin film and in-plane thermal strain measurement method on the water surface, the thermal expansion of the freestanding Nafion thin film was successfully measured with minimizing substrate constraints. Thermal strain measurement and X-ray scattering studies revealed that the weakening of intermolecular interaction within the hydrophobic and hydrophilic domains in the Nafion thin film caused thermal expansion, and well-structured hydrophobic domains could suppress thermal expansion. The thermal expansion behavior with different heat treatments provides evidence of the thin-film-to-bulk transition of the fully hydrated Nafion film. Intrinsic thermal behavior without substrate interactions can facilitate an understanding of the thermal behavior of electrodes and provide insight into designing a robust PEMFC in temperature-varying environments.

SELECTION OF CITATIONS
SEARCH DETAIL