Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 11(1): 9182, 2021 04 28.
Article in English | MEDLINE | ID: mdl-33911138

ABSTRACT

Neurodegenerative disorders are characterized by the decline of cognitive function and the progressive loss of memory. The dysfunctions of the cognitive and memory system are closely related to the decreases in brain-derived neurotrophic factor (BDNF) and cAMP response element-binding protein (CREB) signalings. Ribes fasciculatum, a medicinal plant grown in diverse countries, has been reported to pharmacological effects for autoimmune diseases and aging recently. Here we found that afzelin is a major compound in Ribes fasciculatum. To further examine its neuroprotective effect, the afzelin (100 ng/µl, three times a week) was administered into the third ventricle of the hypothalamus of C57BL/6 mice for one month and scopolamine was injected (i.p.) to these mice to impair cognition and memory before each behavior experiment. The electrophysiology to measure long-term potentiation and behavior tests for cognitive and memory functions were performed followed by investigating related molecular signaling pathways. Chronic administration of afzelin into the brain ameliorated synaptic plasticity and cognitive/memory behaviors in mice given scopolamine. Studies of mice's hippocampi revealed that the response of afzelin was accountable for the restoration of the cholinergic systems and molecular signal transduction via CREB-BDNF pathways. In conclusion, the central administration of afzelin leads to improved neurocognitive and neuroprotective effects on synaptic plasticity and behaviors partly through the increase in CREB-BDNF signaling.


Subject(s)
Dementia/drug therapy , Dementia/etiology , Mannosides/pharmacology , Neuroprotective Agents/pharmacology , Proanthocyanidins/pharmacology , Animals , Brain-Derived Neurotrophic Factor/metabolism , Cognition/drug effects , Cyclic AMP Response Element-Binding Protein/metabolism , Dementia/chemically induced , Disease Models, Animal , Dose-Response Relationship, Drug , Hippocampus/drug effects , Hippocampus/metabolism , Hippocampus/physiopathology , Long-Term Potentiation/drug effects , Male , Mannosides/chemistry , Mannosides/isolation & purification , Memory/drug effects , Mice, Inbred C57BL , Neuroprotective Agents/chemistry , Proanthocyanidins/chemistry , Proanthocyanidins/isolation & purification , Ribes/chemistry , Scopolamine/toxicity
2.
J Wildl Dis ; 54(3): 558-563, 2018 07.
Article in English | MEDLINE | ID: mdl-29517403

ABSTRACT

Eleven avian paramyxovirus type 6 (APMV-6) isolates from Eurasian Wigeon ( n=5; Anas penelope), Mallards ( n=2; Anas platyrhynchos), and unknown species of wild ducks ( n=4) from Korea were analyzed based on the nucleotide (nt) and deduced amino acid sequences of the fusion (F) gene. Fecal samples were collected in 2010-14. Genotypes were assigned based on phylogenetic analyses. Our results revealed that APMV-6 could be classified into at least two distinct genotypes, G1 and G2. The open reading frame (ORF) of the G1 genotype was 1,668 nt in length, and the putative F0 cleavage site sequence was 113PAPEPRL119. The G2 genotype viruses included five isolates from Eurasian wigeons and four isolates from unknown waterfowl species, together with two reference APMV-6 strains from the Red-necked Stint ( Calidris ruficollis) from Japan and an unknown duck from Italy. There was an N-truncated ORF (1,638 nt), due to an N-terminal truncation of 30 nt in the signal peptide region of the F gene, and the putative F0 cleavage site sequence was 103SIREPRL109. The genetic diversity and ecology of APMV-6 are discussed.


Subject(s)
Avulavirus Infections/veterinary , Avulavirus/genetics , Bird Diseases/virology , Ducks/virology , Genetic Variation , Animals , Animals, Wild , Avulavirus/classification , Avulavirus Infections/epidemiology , Avulavirus Infections/virology , Bird Diseases/epidemiology , Phylogeny , Republic of Korea/epidemiology
3.
Cell Death Dis ; 8(12): 3201, 2017 12 11.
Article in English | MEDLINE | ID: mdl-29233982

ABSTRACT

Peroxisome proliferator-activated receptor γ (PPARγ) is the master regulator of adipocyte differentiation and is closely linked to the development of obesity. Despite great progress in elucidating the transcriptional network of PPARγ, epigenetic regulation of this pathway by histone modification remains elusive. Here, we found that CDK2-associated cullin 1 (CACUL1), identified as a novel SIRT1 interacting protein, directly bound to PPARγ through the co-repressor nuclear receptor (CoRNR) box 2 and repressed the transcriptional activity and adipogenic potential of PPARγ. Upon CACUL1 depletion, less SIRT1 and more LSD1 were recruited to the PPARγ-responsive gene promoter, leading to increased histone H3K9 acetylation, decreased H3K9 methylation, and PPARγ activation during adipogenesis in 3T3-L1 cells. These findings were reversed upon fasting or resveratrol treatment. Further, gene expression profiling using RNA sequencing supported the repressive role of CACUL1 in PPARγ activation and fat accumulation. Finally, we confirmed CACUL1 function in human adipose-derived stem cells. Overall, our data suggest that CACUL1 tightly regulates PPARγ signaling through the mutual opposition between SIRT1 and LSD1, providing insight into its potential use for anti-obesity treatment.


Subject(s)
Adipocytes/metabolism , Adipogenesis/genetics , Carrier Proteins/genetics , Epigenesis, Genetic , Histone Demethylases/genetics , PPAR gamma/genetics , Sirtuin 1/genetics , 3T3-L1 Cells , Adipocytes/cytology , Adipocytes/drug effects , Adipogenesis/drug effects , Animals , Carrier Proteins/metabolism , Cell Differentiation , Co-Repressor Proteins/genetics , Co-Repressor Proteins/metabolism , Cullin Proteins , HCT116 Cells , HEK293 Cells , Histone Demethylases/metabolism , Histones/genetics , Histones/metabolism , Humans , Mice , PPAR gamma/metabolism , Resveratrol , Sequence Analysis, RNA , Signal Transduction , Sirtuin 1/metabolism , Stilbenes/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...