Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
J Microbiol Biotechnol ; 34(7): 1-9, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38881180

ABSTRACT

Postbiotics have various functional effects, such as antioxidant, anti-inflammatory, and antiobesity. Levilactobacillus brevis BK3, the subject of this study, was derived from lactic acid bacteria isolated from Kimchi, a traditional Korean fermented food. The antioxidant activity of BK3 was confirmed through the measurements of 2,2-diphenyl-1-picryl-hydrazyl (DPPH), 2,2'-azino-bis (3- ethylbenzothiazoline-6-sulfonic acid) (ABTS), and total antioxidant capacity (TAC). The wrinkle improvement effect was validated by assessing elastase inhibitory activity and collagenase inhibitory activity. The intracellular activity was confirmed using human keratinocytes (HaCaT) and human fibroblasts (HFF-1). BK3 protects skin cells from oxidative stress induced by H2O2 and reduces intracellular ROS production. In addition, the expressions of the antioxidant genes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) were upregulated. Meanwhile, matrix metalloproteinase-1 (MMP-1) and collagen type I alpha 1 (COL1A1), involved in collagen degradation and synthesis, were significantly regulated. These results suggest the possibility of utilizing BK3 as a functional ingredient with antioxidant and wrinkle-improving effects.

2.
Sci Rep ; 14(1): 2134, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38273006

ABSTRACT

This study investigated the effects of supplementation of low-temperature probiotics isolated from the intestines of olive flounder on the growth performance, digestibility, and regulation of intestinal microbiota and the expression of genes related to growth, immunity, and apoptosis in olive flounder. Bacteria showing high growth at approximately 15-20 °C, which is the temperature of olive flounder culture, were isolated and confirmed to be Pseudomonas species through 16S rRNA gene sequence analysis. Whole-genome sequencing revealed that the strain has a 6,195,122 bp single circular chromosome and a guanine-cytosine content of 59.9%. In the feeding trial, supplementation with 1 × 108 CFU/g of the isolate strain positively modulated growth performances, digestive enzyme activity, and gut microbiota composition of olive flounder. RT-qPCR for the comparison of growth, immunity, and apoptosis-related gene expression levels showed no significant differences between the groups. Therefore, the isolated host-associated low-temperature probiotics improved the growth performance of olive flounder by causing positive changes in digestive activity and intestinal microbial composition without affecting host gene expression.


Subject(s)
Fish Diseases , Flounder , Probiotics , Animals , Aquaculture , Fish Diseases/microbiology , Probiotics/pharmacology , RNA, Ribosomal, 16S/genetics , Temperature
3.
Biology (Basel) ; 12(11)2023 Nov 17.
Article in English | MEDLINE | ID: mdl-37998042

ABSTRACT

Two novel strains of Rummeliibacillus sp. and Microbacterium sp. were identified from the intestine of olive flounder (Paralichthys olivaceus) and characterized in vitro as potential probiotics. Feeds without probiotic and with a 50:50 mixture of these two strains (1 × 108 CFU/g feed) were denoted as the control and Pro diets, respectively. Three randomly selected tanks (20 flounders/tank, ~11.4 g each) were used for each diet replication. After 8 weeks of feeding, the growth and feed utilization of the flounder in the Pro group improved (p < 0.05) compared to the control. Among four immune parameters, only myeloperoxidase activity was elevated in the Pro group. Serum biochemistry, intestinal microbial richness (Chao1), and diversity (Shannon index) remained unchanged (p ≥ 0.05), but phylogenetic diversity was enriched in the Pro fish intestine. Significantly lower Firmicutes and higher Proteobacteria were found in the Pro diet; the genus abundance in the control and Pro was as follows: Staphylococcus > Lactobacillus > Corynebacterium and Lactobacillus > Staphylococcus > Corynebacterium, respectively. Microbial linear discriminant scores and a cladogram analysis showed significant modulation. Therefore, the combination of two host-associated probiotics improved the growth and intestinal microbial population of flounder and could be supplemented in the Korean flounder industry.

4.
J Microbiol Biotechnol ; 33(5): 621-633, 2023 05 28.
Article in English | MEDLINE | ID: mdl-36864459

ABSTRACT

We investigated the probiotic characteristics and anti-obesity effect of Lactiplantibacillus plantarum MGEL20154, a strain that possesses excellent intestinal adhesion and viability. The in vitro properties, e.g., gastrointestinal (GI) resistance, adhesion, and enzyme activity, demonstrated that MGEL20154 is a potential probiotic candidate. Oral administration of MGEL20154 to diet-induced obese C57BL/6J mice for 8 weeks resulted in a feed efficacy decrease by 44.7% compared to that of the high-fat diet (HFD) group. The reduction rate of weight gain was about 48.5% in the HFD+MGEL20154 group compared to that of the HFD group after 8 weeks, and the epididymal fat pad was also reduced in size by 25.2%. In addition, the upregulation of the zo-1, pparα, and erk2, and downregulation of the nf-κb and glut2 genes in Caco-2 cells by MGEL20154 were observed. Therefore, we propose that the anti-obesity effect of the strain is exerted by inhibiting carbohydrate absorption and regulating gene expression in the intestine.


Subject(s)
Fermented Foods , Lactobacillus plantarum , Probiotics , Humans , Animals , Mice , Caco-2 Cells , Mice, Inbred C57BL , Obesity/metabolism , Probiotics/pharmacology , Intestines , Diet, High-Fat/adverse effects , Gene Expression , Carbohydrates , Lactobacillus plantarum/metabolism
5.
Anim Nutr ; 12: 20-31, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36381063

ABSTRACT

Host-associated probiotics (HAPs) are bacteria originally isolated from rearing water or the host's gastrointestinal tract in order to enhance the host's growth and health. This study investigated the HAP potential of Bacillus sp. PM8313, isolated from wild red sea bream (Pagrus major), through characterization and feeding trials. Results based on in vitro tests showed that PM8313 is safe, confirming its hemolytic, cytotoxic, and antibiotic resistance. In addition, PM8313 showed advantages as a probiotic with high viability in the gastrointestinal model and a high cell adhesion rate. Whole-genome sequencing demonstrated that PM8313 has a 4,615,871 bp single circular chromosome and a guanine-cytosine content of 45.25%. It also showed the absence of genes encoding virulence factors, such as cytotoxin, enterotoxin, hemolysin, sphingomyelinase, and phospholipase. In the feeding trial, a supplemental diet of 1 × 108 CFU/g PM8313 positively altered the weight gain, digestive enzyme activity, and intestinal microbiota composition of red sea bream. Analysis of nonspecific immune parameters and immune-related gene expression, and a challenge test showed that PM8313 supplementation increases immunity and pathogenic bacteria resistance. Our findings suggest that PM8313 should be considered for application as a novel HAP to red sea bream aquaculture.

6.
Front Microbiol ; 13: 979124, 2022.
Article in English | MEDLINE | ID: mdl-36118225

ABSTRACT

A 6-month feeding trial was conducted to compare the effects of extruded pellet (EP) and moist pellet (MP) feed on the growth performance, non-specific immunity, and intestinal microbiota of olive flounder. A total of 60,000 fish with an average weight of 70.8 ± 6.4 g were divided into two groups and fed with one of two experimental diets. At the end of a 6-month feeding trial, the weight gain and specific growth rate of the fish fed with the MP diets were significantly higher than those of fish fed with EP (P < 0.05). However, the EP group exhibited a lower feed conversion rate than the MP group, meaning that the EP diet was more cost-effective. Whole-body proximate compositions and non-specific immune responses (superoxide dismutase, myeloperoxidase, and lysozyme activity) were not significantly different between the two groups. There were no significant differences in the α-diversity of the intestinal bacterial community of the two groups. However, the composition of microorganisms at the phylum to genus level was different between the groups. The EP group was rich in Actinobacteria, Corynebacterium, Bacillus, and Lactobacillus, whereas the MP group was dominated by Proteobacteria, Vibrio, and Edwardsiella. Collectively, the MP diet increased growth performance and pathogen concentration in the gut; whereas EP improved feed conversion and beneficial Bacillus and Lactobacillus proportion in the intestinal microbial community.

7.
Front Immunol ; 13: 960554, 2022.
Article in English | MEDLINE | ID: mdl-35935938

ABSTRACT

A 56-day feeding trial was conducted to determine the effect of dietary supplementation with Bacillus sp. isolated from the intestines of red sea bream on the growth performance, immunity, and gut microbiome composition of red sea bream. Three diets (a control diet and two treatments) were formulated without Bacillus sp. PM8313 or ß-glucan (control, CD), 1 × 108 CFU g-1 PM8313 (BSD), and 1 × 108 CFU g-1 PM8313 + 0.1% ß-glucan (BGSD). At the end of the experiment, the weight, specific growth rate, feed conversion ratio, and protein efficiency ratio of the fish in the BSD and BGSD diet groups were significantly improved than those of the control group (P < 0.05). Additionally, amylase and trypsin activities were significantly higher (P < 0.05) in both groups compared to the control. Superoxide dismutase and lysozyme activity, which are serum non-specific immune responses, only increased in the BGSD group. The two treatment groups exhibited a marked difference in the intestinal microbiota composition compared to the control group. Furthermore, the treatment groups exhibited an upregulation of IL-6 and NF-κb, coupled with high survival rates when challenged with Edwardsiella tarda. Therefore, dietary supplementation with PM8313 improved the growth performance, digestive enzyme activity, non-specific immunity, and pathogen resistance of red sea bream, in addition to affecting the composition of its intestinal microflora.


Subject(s)
Bacillus , Gastrointestinal Microbiome , Perciformes , Sea Bream , beta-Glucans , Animals , Animal Feed/analysis , beta-Glucans/pharmacology , Dietary Supplements/analysis , Disease Resistance
8.
Animals (Basel) ; 12(16)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36009633

ABSTRACT

In olive flounder (Paralichthys olivaceus), growth performance, expression of growth-related factors, digestive physiology, and gut microbiota were assessed under farm conditions in the fish fed diets with low levels of fishmeal. Four experimental diets were prepared, FM70 [control (CON), 70% fishmeal], FM45 (45% fishmeal), FM35A (35% fishmeal), and FM35B (35% fishmeal + insect meal), and fed to the fish for five months. The CON-fed fish had the highest plasma GH, but IGF-1 and hepatic IGF-1 mRNA expression of the olive flounder fed diets with low-fishmeal levels did not significantly differ among diets. The intestinal villus length, muscular thickness, and the number of goblet cells were statistically similar, and ocular examination of hepatopancreas showed no discernable difference in all experimental diets. The chymotrypsin content of FM35B-fed fish is significantly lower, but trypsin and lipase contents are similar. The diversity of gut microbiota did not differ among groups, although the FM35B group had a higher composition of Firmicutes. Thus, a diet with reduced fishmeal content and several alternative protein sources can be used as feed ingredients in feed formulation for olive flounder reared under typical aquaculture farm conditions.

9.
J Microbiol Biotechnol ; 32(6): 681-698, 2022 Jun 28.
Article in English | MEDLINE | ID: mdl-35722672

ABSTRACT

The Nile tilapia Oreochromis niloticus, Atlantic salmon Salmo salar, rainbow trout Oncorhynchus mykiss, olive flounder Paralichthys olivaceus, common carp Cyprinus carpio, grass carp Ctenopharyngodon idella and rohu carp Labeo rohita are farmed commercially worldwide. Production of these important finfishes is rapidly expanding, and intensive culture practices can lead to stress in fish, often reducing resistance to infectious diseases. Antibiotics and other drugs are routinely used for the treatment of diseases and sometimes applied preventatively to combat microbial pathogens. This strategy is responsible for the emergence and spread of antimicrobial resistance, mass killing of environmental/beneficial bacteria, and residual effects in humans. As an alternative, the administration of probiotics has gained acceptance for disease control in aquaculture. Probiotics have been found to improve growth, feed utilization, immunological status, disease resistance, and to promote transcriptomic profiles and internal microbial balance of host organisms. The present review discusses the effects of single and multi-strain probiotics on growth, immunity, heamato-biochemical parameters, and disease resistance of the above-mentioned finfishes. The application and outcome of probiotics in the field or open pond system, gaps in existing knowledge, and issues worthy of further research are also highlighted.


Subject(s)
Carps , Oncorhynchus mykiss , Probiotics , Animal Feed/analysis , Animals , Aquaculture , Disease Resistance , Oncorhynchus mykiss/microbiology , Probiotics/pharmacology
10.
Front Microbiol ; 13: 891070, 2022.
Article in English | MEDLINE | ID: mdl-35756059

ABSTRACT

This study was performed to investigate the effect of microbial supplementation diet on the survival rate and microbiota composition of artificially produced eel larvae. Microorganisms supplemented in the diet were isolated from wild glass eel intestines and identified as Bacillus sp. through 16S rRNA sequencing analysis. In vitro tests confirmed that the strain had no hemolytic activity and virulence genes. Microbial supplemental feeding significantly increased the survival rate of artificially produced eel larvae for 30 days post-hatchling compared with that of the control group. It also caused changes in the α-diversity, ß-diversity, and relative abundance of the bacterial communities. Analysis via phylogenetic investigation of communities by reconstruction of unobserved states predicted that these microbial community changes would significantly increase the carbohydrate metabolism, membrane transport, and cellular community pathway of the microbial supplementation group. Therefore, microbial supplementation feeding for eel aquaculture could increase the viability of artificially produced eel larvae and alter the microbial composition to induce metabolic changes.

11.
Fish Shellfish Immunol ; 119: 182-192, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34607010

ABSTRACT

The purpose of this study was to characterize the bacteria isolated from rockfish intestines and to investigate the effects of feed supplementation in rockfish aquaculture. Bacillus sp. KRF-7 isolated from the intestine of rockfish (Sebastes schlegelii) was demonstrated to be safe based on in vitro tests confirming the absence of hemolysis, cytotoxicity, and genes with toxigenic potential. In a feeding trial, providing a supplemental diet of 1 × 108 CFU g-1Bacillus sp. KRF-7 was observed to positively alter the weight gain, specific growth rate, feed conversion ratio, and protein efficiency ratio of juvenile rockfish. KRF-7 supplementation showed positive regulation of nonspecific immune parameters, such as superoxide dismutase, lysozyme activity, and myeloperoxidase activity. This analysis also revealed a change in the composition of the intestinal microbiota at the phylum level from Proteobacteria to Firmicutes. In both the kidney and spleen, the expression levels of IL-10, NF-κB, and B cell activating factors in the KRF-7-supplemented group were significantly increased compared to those in the control group. Therefore, this study verified the safety of KRF-7 isolated from the intestine of rockfish and suggests that dietary supplementation with KRF-7 enhances the growth performance of rockfish and has beneficial effects on the regulation of the intestinal microbiota and immune response.


Subject(s)
Bacillus , Bass , Probiotics , Animal Feed/analysis , Animals , Aquaculture , Diet/veterinary , Dietary Supplements , Intestines , Mannans , Oligosaccharides
12.
Biochem Biophys Res Commun ; 571: 125-130, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34325127

ABSTRACT

This study investigated the properties of Latilactobacillus curvatus MS2 isolated from Korean traditional fermented seafood as probiotics and the effect of reducing cholesterol as a synbiotic with isomalto-oligosaccharide (IMO) in BALB/c mice. The isolated strain showed high resistance to acids and bile acids and exhibited a high DPPH scavenging capacity of 72.27 ± 0.38 %. In the intestinal adhesion test using HT-29 cells, the adhesion rate of MS2 was 17.10 ± 1.78 %, which was higher than the adhesion rate of the other investigated probiotics. MS2 showed good antimicrobial activity against food-borne pathogens, especially Staphylococcus aureus, S. epidermidis, Escherichia coli, and Vibrio vulnificus. This strain had high availability for IMO among the prebiotics of fructo-oligosaccharide, inulin and IMO. Oral administration of MS2 and IMO to BALB/c mice for 5 weeks resulted in a significant reduction in blood cholesterol levels by regulating liver lipid metabolism. These results suggest that the combination of MS2 and IMO has potential for application in functional foods.


Subject(s)
Cholesterol/metabolism , Fermentation , Lactobacillaceae/isolation & purification , Oligosaccharides/metabolism , Prebiotics/microbiology , Seafood/microbiology , Animals , Male , Mice , Mice, Inbred BALB C , Republic of Korea , Synbiotics
13.
Aquaculture ; 541: 736783, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-33883784

ABSTRACT

Several antiviral peptides (AVPs) from aquatic organisms have been effective in interfering with the actions of infectious viruses, such as Human Immunodeficiency Virus-1 and Herpes Simplex Virus-1 and 2. AVPs are able to block viral attachment or entry into host cells, inhibit internal fusion or replication events by suppressing viral gene transcription, and prevent viral infections by modulating host immunity. Therefore, as promising therapeutics, the potential of aquatic AVPs for use against the COVID-19 pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) is considered. At present no therapeutic drugs are yet available. A total of 32 AVPs derived from fish and shellfish species are discussed in this review paper with notes on their properties and mechanisms of action in the inhibition of viral diseases both in humans and animals, emphasizing on SARS-CoV-2. The molecular structure of novel SARS-CoV-2 with its entry mechanisms, clinical signs and symptoms are also discussed. In spite of only a few study of these AVPs against SARS-CoV-2, aquatic AVPs properties and infection pathways (entry, replication and particle release) into coronaviruses are linked in this paper to postulate an analysis of their potential but unconfirmed actions to impair SARS-CoV-2 infection in humans.

14.
Probiotics Antimicrob Proteins ; 13(5): 1277-1291, 2021 10.
Article in English | MEDLINE | ID: mdl-33713023

ABSTRACT

Experiments were conducted to identify different ratios of Bacillus sp. SJ-10 and Lactobacillus plantarum KCCM 11322 mixtures at a concentration of 1 × 108 CFU/g diet; the effects on growth and cellular and humoral immune responses and the characteristics of disease protection in olive flounder (Paralichthys olivaceus). Flounder were divided into six groups and fed control diet D-1 (without Bacillus sp. SJ-10 and L. plantarum KCCM 11322), positive control diets D-2 (Bacillus sp. SJ-10 at 1 × 108 CFU/g feed) and D-3 (L. plantarum KCCM 11322 at 1 × 108 CFU/g feed); or treatment diets D-4 (3:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.75 + 0.25 × 108 CFU/g feed), D-5 (1:1 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.50 + 0.50 × 108 CFU/g feed), or D-6 (1:3 Bacillus sp. SJ-10 and L. plantarum KCCM 11322 at 0.25 + 0.75 × 108 CFU/g feed) for 8 weeks. Group D-4 demonstrated better growth and feed utilization (P < 0.05) compared with the controls and positive controls. Similar modulation was also observed in respiratory burst for all treatments and in the expression levels of TNF-α, IL-1ß, IL-6, and IL-10 in different organs in D-4. D-4 and D-5 increased respiratory burst, superoxide dismutase, lysozyme, and myeloperoxidase activities compared with the controls, and only D-4 increased microvilli length. When challenged with 1 × 108 CFU/mL Streptococcus iniae, the fish in the D-4 and D-5 groups survived up to 14 days, whereas the fish in the other groups reached 100% mortality at 11.50 days. Collectively, a ratio-specific Bacillus sp. SJ-10 and L. plantarum KCCM 11322 mixture (3:1) was associated with elevated growth, innate immunity, and streptococcosis resistance (3:1 and 1:1) compared with the control and single probiotic diets.


Subject(s)
Bacillus , Dietary Supplements , Flounder , Immunity, Humoral , Lactobacillus plantarum , Animal Feed , Animal Nutritional Physiological Phenomena , Animals , Flounder/growth & development , Flounder/immunology
15.
Enzyme Microb Technol ; 143: 109703, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33375971

ABSTRACT

ß-1,3-1,4-glucanase (BG) is an industrially important enzyme owing to its stringent specificity for ß-glucan cleavage. In this study, poly-γ-glutamic acid (γ-PGA) was added to BG to investigate its effect on improving the activity and stability of the enzyme. The effect of γ-PGA was investigated by analyzing kinetic and thermodynamic parameters. Compared to control, significant differences (P < .05) in enzyme activity were observed when 1.0 %, 1.5 %, and 2.0 % γ-PGA was added, and the activities were increased 1.23 ±â€¯0.05, 1.23 ±â€¯0.07, and 1.31 ±â€¯0.07-fold, respectively. Regarding thermostability, residual BG activity after a 1 h incubation at 60 °C was 12.53 ±â€¯0.06 % without γ-PGA and 79.02 ±â€¯5.76 % with 1% γ-PGA. The storage stability at 25 °C and 50 °C also increased when γ-PGA was present. The kinetics and thermodynamic investigations indicated that the increased activity and stability of BG when γ-PGA was added were due to increased values of the Vmax, Kcat, and activation energy for denaturation. The findings of this study suggest that adding γ-PGA to BG increases the application value of this enzyme in the food and feed industries.


Subject(s)
Bacillus , Glutamic Acid , Kinetics , Polyglutamic Acid
16.
Res Vet Sci ; 131: 177-185, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32388020

ABSTRACT

Heat-killed (HK) Bacillus sp. SJ-10 (B), HK Lactobacillus plantarum (P), and their combination were dietary supplemented to olive flounder (Paralichthys olivaceus) to quantify the effects on growth, innate immunity, and disease resistance. Four test diets were supplied: a control feed free of HK probiotics, 1 × 108 CFUs g-1 single treatments of each of HK B (HKB) and HK P (HKP), and an equal proportion of (0.5 HKB + 0.5 HKP) × 108 CFUs g-1 (HKB0.5 HKP0.5). At 8 weeks of completion feeding trail, HKB0.5 HKP0.5 significantly (P < .05) improved growth, feed utilization, and nonspecific immune parameters (respiratory burst and superoxide dismutase) compared to the control group. Similarly, serum lysozyme and myeloperoxidase activities were higher in both HKB and HKB0.5HKP0.5 groups. The levels of pro-inflammatory cytokine IL-6 in the liver and IL-1ß in the liver, kidney, and spleen were also improved in the treatments, but microvilli length was only increased in HKB0.5HKP0.5. After Streptococcus iniae 1 × 108 CFUs mL-1 challenged; HKB and HKB0.5HKP0.5 had a higher survival than control and HKP. Overall, dietary administration of synergy HK probiotics elevated growth, cellular and humoral immunity, and streptococcosis resistance in olive flounder.


Subject(s)
Bacillus , Diet/veterinary , Flounder , Lactobacillus plantarum , Probiotics/pharmacology , Animals , Cytokines/genetics , Cytokines/immunology , Cytokines/metabolism , Dietary Supplements , Fish Diseases/immunology , Fish Diseases/microbiology , Fish Diseases/prevention & control , Gene Expression Regulation/drug effects , Immunity, Cellular/drug effects , Immunity, Innate/drug effects , Streptococcal Infections/immunology , Streptococcus iniae
17.
J Microbiol Biotechnol ; 30(7): 2003-3020, 2020 Jul 28.
Article in English | MEDLINE | ID: mdl-32325546

ABSTRACT

The N-terminal domain of the Pseudomonas sp. FB15 phytase increases low-temperature activity and catalytic efficiency. In this study, the 3D structure of the N-terminal domain was predicted and substitutions for the amino acid residues of the region assumed to be the active site were made. The activity of mutants, in which alanine (A) was substituted for the original residue, was investigated at various temperatures and pH values. Significant differences in enzymatic activity were observed only in mutant E263A, suggesting that the amino acid residue at position 263 of the N-terminal domain is important in enzyme activity.


Subject(s)
6-Phytase/genetics , 6-Phytase/metabolism , Amino Acid Substitution , Mutagenesis, Site-Directed , Pseudomonas/enzymology , Pseudomonas/genetics , 6-Phytase/chemistry , Amino Acids , Bacterial Proteins , Catalysis , Catalytic Domain , Endopeptidases , Enzyme Stability , Hydrogen-Ion Concentration , Phytic Acid/metabolism , Protein Conformation , Pseudomonas/metabolism , Temperature
18.
Int J Biol Macromol ; 153: 616-624, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32165198

ABSTRACT

The antioxidant effects and cytoprotection of the poly-γ-glutamic acid (γ-PGA) were investigated. γ-PGA with a molecular weight of ~400 kDa showed hydroxyl radical (OH•) averting capacity (HORAC), 85.2% at 1 mg/mL, which was caused by the chelation of transition metal ions and scavenging hydrogen peroxide. Moreover, this γ-PGA showed 94.1% superoxide anion radical (O2•-) scavenging and 96.0% lipid peroxidation inhibition activity at the same concentrations. The IC50 values were 130 ± 4.2, 107 ± 3.5 and 128 ± 3.8 µg/mL against OH•, O2•- and lipid peroxidation, respectively. There was no significant variation in the HORAC of γ-PGA after 9 h, the end point of the simulated digestion model. Furthermore, γ-PGA showed a completely protective effect in Caco-2 cells and probiotic bacteria against oxidative damage at 1 mg/mL. These data suggest that γ-PGA has a potential use as a cytoprotectant in food and feed supplements, cosmetics and biomedical fields.


Subject(s)
Antioxidants , Cytoprotection/drug effects , Lipid Peroxidation/drug effects , Oxidative Stress/drug effects , Polyglutamic Acid/analogs & derivatives , Antioxidants/chemistry , Antioxidants/pharmacology , Caco-2 Cells , Humans , Polyglutamic Acid/chemistry , Polyglutamic Acid/pharmacology
19.
Microorganisms ; 8(2)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32092964

ABSTRACT

An eight-week feeding trial was conducted to evaluate the effects of different dietary probiotic supplements in juvenile whiteleg shrimp, Litopenaeus vannamei. A basal control diet without probiotics (CON), and five other diets by supplementing Bacillus subtilis at 107 CFU/g diet (BS7), B. subtilis (BS8), Pediococcus pentosaceus (PP8), and Lactococcus lactis (LL8) at 108 CFU/g diet, and oxytetracycline (OTC) at 4 g/kg diet were used. Whiteleg shrimp with initial body weights of 1.41 ± 0.05 g (mean ± SD) were fed with these diets. Growth of shrimp fed BS8 and LL8 diets was significantly higher than those of shrimp fed the CON diet (p < 0.05). Superoxide dismutase activity in shrimp fed PP8 and LL8 diets was significantly higher than that of shrimp fed the CON diet (p < 0.05). Lysozyme activity of shrimp fed probiotics and OTC diets significantly improved compared to those on the CON diet (p < 0.05). The intestinal histology showed healthier guts for shrimp fed the probiotic diets (p < 0.05). Immune-related gene expression in shrimp fed BS8, PP8 and LL8 diets was recorded as significantly higher than that of shrimp fed CON and OTC diets (p < 0.05). Also, results of the challenge test for 7 days and the digestive enzyme activity of shrimp fed BS8, PP8, and LL8 were significantly improved compared to those on the CON diet (p < 0.05). Therefore, these results indicated that L. lactis at 108 CFU/g could be an ideal probiotic for whiteleg shrimp, and also B. subtilis WB60 and P. pentosaceus at 108 CFU/g could improve the growth, immunity, histology, gene expression, digestive enzyme activity, and disease resistance, while replacing antibiotics.

20.
Microorganisms ; 8(1)2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31906334

ABSTRACT

An eight-week feeding trial was conducted to evaluate the effects of a basal control diet (CON), Bacillus subtilis at 107 (BS7) and at 108 CFU/g diet (BS8), Lactococcus lactis at 107 CFU/g (LL7) and at 108 CFU/g diet (LL8), and oxytetracycline (OTC) at 4 g/kg diet on Nile tilapia. Fish with initial body weight of 2.83 ± 0.05 g (mean ± SD) were fed two times a day. Weight gain, specific growth rate, feed efficiency, protein efficiency ratio and lysozyme activity of fish fed BS8, LL8 and LL7 diets were significantly higher than those of fish fed CON diet (p < 0.05). Superoxide dismutase and myeloperoxidase activity of fish fed BS8, LL8, BS7, LL7 and OTC diets were significantly higher than those of fish fed CON diet. Intestinal villi length and muscular layer thickness of fish fed BS8, LL8 and LL7 diets were significantly higher than those of fish fed CON and OTC diets. Also, heat shock protein 70 (HSP70), interleukin (IL-1ß), interferon-gamma (IFN-γ) and tumour necrosis factor (TNF-α) gene expression of fish fed BS8 and LL8 diets were significantly higher than those of fish fed CON diet. After 13 days of challenge test, cumulative survival rate of fish fed BS8 and LL8 diets were significantly higher than those of fish fed CON, BS7 and OTC diets. Based on these results, B. subtilis and L. lactis at 108 (CFU/g) could replace antibiotics, and have beneficial effects on growth, immunity, histology, gene expression, and disease resistance in Nile tilapia.

SELECTION OF CITATIONS
SEARCH DETAIL
...