Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 39(6): 161, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37067621

ABSTRACT

It is well acknowledged that microplastics are a major environmental problem and that the use of plastics, both petro- and bio- based, should be reduced. Nevertheless, it is also a necessity to reduce the amount of the already spread plastics. These cannot be easily degraded in the nature and accumulate in the food supply chain with major danger for animals and human life. It has been shown in the literature that advanced oxidation processes (AOPs) modify the surface of polylactic acid (PLA) materials in a way that bacteria more efficiently dock on their surface and eventually degrade them. In the present work we investigated the influence of different AOPs (ultrasounds, ultraviolet irradiation, and their combination) on the biodegradability of PLA films treated for different times between 1 and 6 h. The pre-treated samples have been degraded using a home model compost as well as a cocktail of commercial enzymes at mesophilic temperatures (37 °C and 42 °C, respectively). Degradation degree has been measured and degradation products have been identified. Excellent degradation of PLA films has been achieved with enzyme cocktail containing commercial alkaline proteases and lipases of up to 90% weight loss. For the first time, we also report valorization of PLA into bacterial nanocellulose after enzymatic hydrolysis of the samples.


Subject(s)
Composting , Plastics , Animals , Humans , Polyesters , Bacteria
2.
World J Microbiol Biotechnol ; 39(1): 32, 2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36462123

ABSTRACT

Given the environmental burden of textile industry, especially of dyeing processes and the volume of synthetic dyes and surfactants, the intensive development of the greener approaches is under way. Herein, an environmentaly-friendly dyeing of polyamide (PA) and PA/Elastane (PA/EA) knits using live bacterial approach in water environment, completely eliminating usage of textile auxiliaries is described. A total of 12 pigment-producing Streptomyces strains were isolated and purified from soil and rizoshere or bark of smoke tree Cotinus coggygria samples. The antibacterial, antifungal and cytotoxic effects of crude bacterial extracts were tested. Antimicrobial effect was obtained by the majority of extracts but only two streptomycetes extracts, 11-5 and BPS51, showed moderate cytotoxicity against HaCaT human cell line. This was the reason to select 11-5 and BPS51 strains for the dyeing of the textile materials. Excellent properties of dyeing wool, silk and PA are achieved initially using live cultures, and the bioprocess is optimized on commercial PA and PA/EA knits used for stockings production. Satisfactory coloration of both knits is achieved with dynamic conditions (culture shaking at 180 rpm over 5-14 days at 30 ºC) giving the best coloration results, except in the case of the PA sample dyed with a bacterial strain 11-5. The prolongation of dyeing time leads to higher color yields independently of fabric and bacteria strain. Although the color differences between the samples before and after washing are observed, washing fastness after three washing cycles can be considered as satisfactory.


Subject(s)
Nylons , Streptomyces , Animals , Humans , Coloring Agents , Nylons/pharmacology , Polyurethanes
3.
Polymers (Basel) ; 13(21)2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34771249

ABSTRACT

Meeting the challenge of circularity for plastics requires amenability to repurposing post-use, as equivalent or upcycled products. In a compelling advancement, complete circularity for a biodegradable polyvinyl alcohol/thermoplastic starch (PVA/TPS) food packaging film was demonstrated by bioconversion to high-market-value biopigments and polyhydroxybutyrate (PHB) polyesters. The PVA/TPS film mechanical properties (tensile strength (σu), 22.2 ± 4.3 MPa; strain at break (εu), 325 ± 73%; and Young's modulus (E), 53-250 MPa) compared closely with low-density polyethylene (LDPE) grades used for food packaging. Strong solubility of the PVA/TPS film in water was a pertinent feature, facilitating suitability as a carbon source for bioprocessing and microbial degradation. Biodegradability of the film with greater than 50% weight loss occurred within 30 days of incubation at 37 °C in a model compost. Up to 22% of the PVA/TPS film substrate conversion to biomass was achieved using three bacterial strains, Ralstonia eutropha H16 (Cupriavidus necator ATCC 17699), Streptomyces sp. JS520, and Bacillus subtilis ATCC6633. For the first time, production of the valuable biopigment (undecylprodigiosin) by Streptomyces sp. JS520 of 5.3 mg/mL and the production of PHB biopolymer at 7.8% of cell dry weight by Ralstonia eutropha H16 from this substrate were reported. This low-energy, low-carbon post-use PVA/TPS film upcycling model approach to plastic circularity demonstrates marked progress in the quest for sustainable and circular plastic solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...