Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Magn Reson ; 286: 138-142, 2018 01.
Article in English | MEDLINE | ID: mdl-29241045

ABSTRACT

Recently, it was observed that protons in non-conducting solids doped with 1,3-bisdiphenylene-2-phenylallyl (BDPA) or its sulfonated derivative (SA-BDPA) can be polarized through Overhauser effects via resonant microwave irradiation. These effects were present under magic angle spinning conditions in magnetic fields between 5 and 18.8 T and at temperatures near 100 K. This communication reports similar effects in static samples at 6.7 T and, more importantly, at temperatures as low as 1.2 K, in a different dynamic regime than in the previous study. Our results provide new information towards understanding the mechanism of the Overhauser effect in non-conducting solids. We discuss possible origins of the fluctuations that can give rise to an Overhauser effect at such low temperatures.

2.
Chem Sci ; 7(11): 6846-6850, 2016 Nov 01.
Article in English | MEDLINE | ID: mdl-28451127

ABSTRACT

Hyperpolarization of metabolites by dissolution dynamic nuclear polarization (D-DNP) for MRI applications often requires fast and efficient removal of the radicals (polarizing agents). Ordered mesoporous SBA-15 silica materials containing homogeneously dispersed radicals, referred to as HYperPolarizing SOlids (HYPSOs), enable high polarization - P(1H) = 50% at 1.2 K - and straightforward separation of the polarizing HYPSO material from the hyperpolarized solution by filtration. However, the one-dimensional tubular pores of SBA-15 type materials are not ideal for nuclear spin diffusion, which may limit efficient polarization. Here, we develop a generation of hyperpolarizing solids based on a SBA-16 structure with a network of pores interconnected in three dimensions, which allows a significant increase of polarization, i.e. P(1H) = 63% at 1.2 K. This result illustrates how one can improve materials by combining a control of the incorporation of radicals with a better design of the porous network structures.

3.
J Magn Reson ; 234: 58-66, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23838526

ABSTRACT

In standard Dynamic Nuclear Polarization (DNP) electron spins are polarized at low temperatures in a strong magnetic field and this polarization is transferred to the nuclear spins by means of a microwave field. To obtain high nuclear polarizations cryogenic equipment reaching temperatures of 1 K or below and superconducting magnets delivering several Tesla are required. This equipment strongly limits applications in nuclear and particle physics where beams of particles interact with the polarized nuclei, as well as in neutron scattering science. The problem can be solved using short-lived optically excited triplet states delivering the electron spin. The spin is polarized in the optical excitation process and both the cryogenic equipment and magnet can be simplified significantly. A versatile apparatus is described that allows to perform pulsed dynamic nuclear polarization experiments at X-band using short-lived optically excited triplet sates. The efficient (4)He flow cryostat that cools the sample to temperatures between 4 K and 300 K has an optical access with a coupling stage for a fiber transporting the light from a dedicated laser system. It is further designed to be operated on a neutron beam. A combined pulse ESR/DNP spectrometer has been developed to observe and characterize the triplet states and to perform pulse DNP experiments. The ESR probe is based on a dielectric ring resonator of 7 mm inner diameter that can accommodate cubic samples of 5mm length needed for neutron experiments. NMR measurements can be performed during DNP with a coil integrated in the cavity. With the presented apparatus a proton polarization of 0.5 has been achieved at 0.3 T.

4.
Phys Rev Lett ; 105(1): 018104, 2010 Jul 02.
Article in English | MEDLINE | ID: mdl-20867484

ABSTRACT

A high throughput method was designed to produce hyperpolarized gases by combining low-temperature dynamic nuclear polarization with a sublimation procedure. It is illustrated by applications to 129Xe nuclear magnetic resonance in xenon gas, leading to a signal enhancement of 3 to 4 orders of magnitude compared to the room-temperature thermal equilibrium signal at 7.05 T.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Phase Transition , Xenon/chemistry , Temperature
5.
Proc Natl Acad Sci U S A ; 106(44): 18469-73, 2009 Nov 03.
Article in English | MEDLINE | ID: mdl-19841270

ABSTRACT

Major breakthroughs have recently been reported that can help overcome two inherent drawbacks of NMR: the lack of sensitivity and the limited memory of longitudinal magnetization. Dynamic nuclear polarization (DNP) couples nuclear spins to the large reservoir of electrons, thus making it possible to detect dilute endogenous substances in magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI). We have designed a method to preserve enhanced ("hyperpolarized") magnetization by conversion into long-lived states (LLS). It is shown that these enhanced long-lived states can be generated for proton spins, which afford sensitive detection. Even in complex molecules such as peptides, long-lived proton states can be sustained effectively over time intervals on the order of tens of seconds, thus allowing hyperpolarized substrates to reach target areas and affording access to slow metabolic pathways. The natural abundance carbon-13 polarization has been enhanced ex situ by almost four orders of magnitude in the dipeptide Ala-Gly. The sample was transferred by the dissolution process to a high-resolution magnet where the carbon-13 polarization was converted into a long-lived state associated with a pair of protons. In Ala-Gly, the lifetime T(LLS) associated with the two nonequivalent H(alpha) glycine protons, sustained by suitable radio-frequency irradiation, was found to be seven times longer than their spin-lattice relaxation time constant (T(LLS)/T(1) = 7). At desired intervals, small fractions of the populations of long-lived states were converted into observable magnetization. This opens the way to observing slow chemical reactions and slow transport phenomena such as diffusion by enhanced magnetic resonance.


Subject(s)
Magnetics , Dipeptides/chemistry , Magnetic Resonance Imaging , Magnetic Resonance Spectroscopy , Protons , Time Factors
6.
J Magn Reson ; 194(1): 152-5, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18595751

ABSTRACT

New low-temperature inserts compatible with an existing hyperpolarizer were developed to dynamically polarize nuclei in large samples. The performance of the system was tested on 8 ml glassy frozen solutions containing 13C-labeled molecules and doped with nitroxyl free radicals. The obtained 13C low-temperature polarization was comparable to the one measured on 20 times smaller sample volume with only 3-4 times higher microwave power. By using a dissolution insert that fits to the new design, it was possible to obtain about 120 ml of room-temperature hyperpolarized solution. The polarization as well as the molecule concentration was comparable to the values obtained in standard size hyperpolarized samples. Such large samples are interesting for future studies on larger animals and possibly for potential clinical applications.


Subject(s)
Carbon Isotopes/chemistry , Carbon Isotopes/isolation & purification , Chemical Fractionation/methods , Isotope Labeling/methods , Magnetic Resonance Spectroscopy/methods , Solutions/chemistry , Solutions/isolation & purification , Static Electricity
7.
J Chem Phys ; 128(24): 241102, 2008 Jun 28.
Article in English | MEDLINE | ID: mdl-18601309

ABSTRACT

Apart from their very classical use to build polarized targets for particle physics, the methods of dynamic nuclear polarization (DNP) have more recently found application for sensitivity enhancement in high-resolution NMR, both in the solid and in the liquid state. It is often thought that the possible signal enhancement in such applications deteriorates when the DNP is performed at higher fields. We show that for a dissolution-DNP method that uses conventional (2,2,6,6-tetramethylpiperidine 1-oxyl) radicals as the paramagnetic agent, this is not the case for fields up to 5 T.


Subject(s)
Magnetic Resonance Spectroscopy/methods , Cyclic N-Oxides , Free Radicals , Magnetic Resonance Spectroscopy/instrumentation , Magnetics
8.
J Phys Condens Matter ; 18(26): 6085-93, 2006 Jul 05.
Article in English | MEDLINE | ID: mdl-21690821

ABSTRACT

We have studied the magnetic behaviour of Fe(3)O(4) nanowires (NWs) with two different diameter ranges, above 150 nm and below 60 nm, made by electrodeposition techniques into a polymeric template. The nanowires were characterized using various techniques, in particular Mössbauer and thermoelectrical power measurements. The stoichiometric distribution of Fe cations showed clearly the presence of the magnetite inverse spinel electronic structure. Structural analysis performed using high-resolution transmission electron microscopy revealed two kinds of nanowire morphologies depending on the size. For nanowires above 150 nm in diameter, a contiguous network of well-bound nanoparticles was obtained. Instead, with a diameter of 60 nm, a polycrystalline structure was observed. The largest nanowires presented a magnetoresistance (MR) greater than 10%, whereas the thinner nanowires had almost none.

SELECTION OF CITATIONS
SEARCH DETAIL