Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Chemistry ; 23(8): 1956-1964, 2017 Feb 03.
Article in English | MEDLINE | ID: mdl-27882624

ABSTRACT

Fluorographene is the youngest stoichiometric derivative of graphene; hence, its reactivity is only poorly explored. Compared to graphene, the significantly higher reactivity of C-F bonds makes this material a suitable platform for a large number of chemical modifications. Fluorographene is also the only member of the halographene family that can be prepared in the stoichiometric composition (C1 F1 ). Herein, the chemical modification of fluorographene with Grignard reagents, which are well known in organic synthesis for the formation of new C-C bonds, is presented. The reaction with alkyl magnesium bromides led to successful modification of fluorographene with ethyl, vinyl, ethynyl and propargyl groups. Chemical characterisation showed the presence of covalently bonded functional groups in a high concentration exceeding one functional group per C6 motif. The reactivity of Grignard reagents with fluorographene decreased from ethyl to ethynyl. The terminal carbon-carbon triple bonds were used for click reactions with organic azides leading to the formation of triazole rings. These findings open up a broad spectrum of opportunities for simple and robust modification of graphene by chemical reactions proceeding at room temperature under mild conditions. These results have major application potential in sensing, biomedical and energy-related applications.

2.
Inorg Chem ; 55(8): 3797-806, 2016 Apr 18.
Article in English | MEDLINE | ID: mdl-27018918

ABSTRACT

The anionic nitriles 1-R-12-NC-CB11H10(-) (R = H, CH3, I, COOH), 12-NC-1-H-CB11Me10(-), and 12-NC-1-H-CB11F10(-) were prepared, and three of them were examined for complex formation with (Et3P)2Pt(II) and (Et3P)2Pd(II). Several stable internally charge-compensated zwitterionic complexes were obtained and characterized. RI-BP86/SV(P) calculations suggest that their dipole moments exceed 20 D. An attempt to measure the dipole moments in solution failed due to insufficient solubility in solvents of low polarity.

3.
Nanoscale ; 8(24): 12134-42, 2016 Jun 16.
Article in English | MEDLINE | ID: mdl-26879645

ABSTRACT

Graphene derivatives are promising materials for the electrochemical sensing of diverse biomolecules and development of new biosensors owing to their improved electron transfer kinetics compared to pristine graphene. Here, we report complex electrochemical behavior and electrocatalytic performance of variously fluorinated graphene derivatives prepared by reaction of graphene with a nitrogen-fluorine mixture at 2 bars pressure. The fluorine content was simply controlled by varying the reaction time and temperature. The studies revealed that electron transfer kinetics and electrocatalytic activity of CFx strongly depend on the degree of fluorination. The versatility of fluorinated graphene as a biosensor platform was demonstrated by cyclic voltammetry for different biomolecules essential in physiological processes, i.e. NADH, ascorbic acid and dopamine. Importantly, the highest electrochemical performance, even higher than pristine graphene, was obtained for fluorinated graphene with the lowest fluorine content (CF0.084) due to its high conductivity and enhanced adsorption properties combining π-π stacking interaction with graphene regions with hydrogen-bonding interaction with fluorine atoms.


Subject(s)
Biosensing Techniques/instrumentation , Fluorine/chemistry , Graphite/chemistry , Adsorption , Electrons
4.
Chemistry ; 21(46): 16474-8, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26442653

ABSTRACT

Fluorographane (C1 Hx F1-x+δ )n is a new member of the graphene family that exhibits hydrophobicity and a large band gap that is tunable based on the level of fluorination. Herein, sensing and energy applications of fluorographane are reported. The results reveal that the carbon-to-fluoride ratio of fluorographane has a great impact on the electrochemical performance of the materials. Lowered oxidation potentials for ascorbic and uric acids, in addition to a catalytic effect for hydroquinone and dopamine redox processes, are obtained with a high fluoride content. Moreover, fluorographane, together with residual copper- and nickel-based doping, acted as a hybrid electrocatalyst to promote hydrogen evolution and oxygen reduction reactions with considerably lower onset potentials than those of graphane (starting material), which makes this a promising material for a broad range of applications.


Subject(s)
Graphite/chemistry , Hydrogen/chemistry , Oxygen/chemistry , Biomarkers , Catalysis , Electrochemistry , Electrodes , Halogenation , Oxidation-Reduction , Uric Acid/chemistry
5.
Nanoscale ; 7(32): 13646-55, 2015 Aug 28.
Article in English | MEDLINE | ID: mdl-26214601

ABSTRACT

The availability of well-defined modified graphene derivatives such as fluorographene, graphane, thiographene or hydroxygraphene is of pivotal importance for tuning the resulting material properties in numerous potential applications. A series of fluorinated graphene with various contents of fluorine was synthesized by a simple fluorination procedure in an autoclave with a nitrogen/fluorine atmosphere at different exposure times and temperatures. To investigate the composition, structure and properties all samples were characterized in detail by a number of analytical techniques such as SEM, XRD, EDS, AFM, STEM, combustible elemental analysis, STA, XPS, Raman spectroscopy, UV-VIS spectroscopy and cyclic voltammetry. The fully fluorinated graphene with the overall stoichiometry C1F1.05 had a bright white color indicating a significant change of band-gap. In comparison to other samples such a high concentration of fluorine led to the occurrence of exotic thermal behavior, strong luminescence in the visible spectral region and also the unique super-hydrophobic behavior observed on the material surface. The described tunable fluorination should pave the way to fluorographene based devices with tailored properties.

6.
Chem Commun (Camb) ; 51(26): 5633-6, 2015 Apr 04.
Article in English | MEDLINE | ID: mdl-25693806

ABSTRACT

Fluorographane (C1HxF1-x-δ)n was obtained from graphene by hydrogenation via the Birch reaction with consequent fluorination of the resulting graphane. Fluorographane exhibits fast heterogeneous electron transfer rates and hydrophobicity, which increase with increasing fluorination.

7.
Eur J Med Chem ; 83: 389-97, 2014 Aug 18.
Article in English | MEDLINE | ID: mdl-24980120

ABSTRACT

The syntheses of the unprotected neutral closo-carboranyl-C-deoxyriboses, starting from anomeric mixture of 1-ethynyldeoxyriboses, and their corresponding open-cage nido-derivatives have been described. The structures of both the α- and ß-anomers were confirmed by single-crystal X-ray diffraction. While limited water solubility of the neutral closo-anomers led to high cytotoxicity, their cesium salts (nido-species) exhibited higher water solubility leading to lower cytotoxicity. However, in vitro boron neutron capture therapy (BNCT) investigation using the murine squamous cell carcinoma (SCCVII) cell lines showed that there are no significant differences between the survival fractions of the two species.


Subject(s)
Boron Compounds/chemistry , Nucleosides/chemistry , Nucleosides/pharmacology , Animals , Boron Neutron Capture Therapy , Cell Line, Tumor , Chemistry Techniques, Synthetic , Isomerism , Mice , Nucleosides/chemical synthesis , Nucleosides/therapeutic use , Solubility , Structure-Activity Relationship , Water/chemistry
8.
Beilstein J Org Chem ; 6: 1099-105, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21160562

ABSTRACT

Cross-metathesis between allylcarboranes and O-allylcyclodextrins was catalyzed by Hoveyda-Grubbs 2(nd) generation catalyst in toluene. The corresponding carboranyl-cyclodextrin conjugates were isolated in 15-25% yields.

9.
Inorg Chem ; 49(3): 1166-79, 2010 Feb 01.
Article in English | MEDLINE | ID: mdl-20043626

ABSTRACT

Amino acid [closo-1-CB(9)H(8)-1-COO-10-NH(3)](-) (4) was prepared by amination of iodo acid [closo-1-CB(9)H(8)-1-COOH-10-I](-) (1) with LiHMDS in a practical and reproducible manner. The apparent dissociation constants, pK(2) = 5.6 and pK(1) > 11, were measured for 4[NMe(4)] in 50% aq. EtOH. Diazotization of 4 with NO(+)PF(6)(-) under mildly basic conditions afforded stable dinitrogen acid [closo-1-CB(9)H(8)-1-COOH-10-N(2)] (5). Activation parameters (DeltaH(++) = 33.9 +/- 1.4 kcal mol(-1) and DeltaS(++) = 10 +/- 3.5 cal mol(-1) K(-1)) for thermolysis of its methyl ester [closo-1-CB(9)H(8)-1-COOMe-10-N(2)] (11) in PhCN were established, and the heterolysis of the B-N bond is believed to be the rate-determining step. Electrochemical analysis showed a partially reversible reduction process for 11 (E(1/2)(red) = -1.03 V) and 5(-) (E(1/2)(red) = -1.21 V), which are more cathodic than reduction of [closo-1-CB(9)H(9)-1-N(2)] (17). The dinitrogen acid 5 was reacted with pyridine and N,N-dimethylthioformamide, to form pyridine acid 6 and protected mercapto acid 7, respectively, through a boronium ylide intermediate 18. Compound 7 was converted to sulfonium acid 8. The molecular and crystal structures for 5 [C(2)H(9)B(9)N(2)O(2) monoclinic, P2(1)/n, a = 7.022(2) A, b = 11.389(4) A, c = 12.815(4) A, beta = 96.212(5) degrees ; V = 1018.8(6) A(3), Z = 4,], 6 [C(7)H(14)B(9)NO(2), monoclinic, P2(1)/n, a = 14.275(4) A, b = 12.184(3) A, c = 30.538(8) A, beta = 95.377(4) degrees ; V = 5288(3) A(3), Z = 16], and 8 [C(7)H(19)B(9)O(2)S, monoclinic, P2(1)/c, a = 15.988(5) A, b = 19.377(6) A, c = 9.655(3) A, beta = 98.348(5) degrees; V = 2959.4(16) A(3), Z = 8] were determined by X-ray crystallography and compared with results of density functional theory (DFT) and MP2 calculations. Electronic structures of 5, 6, and related species were elucidated with electronic spectroscopy and assessed computationally at the B3LYP/6-31G(d,p), MP2/6-31G(d,p), and ZINDO//MP2 levels of theory.


Subject(s)
Amino Acids/chemistry , Amino Acids/chemical synthesis , Nitrogen Compounds/chemistry , Nitrogen Compounds/chemical synthesis , Anions/chemistry , Crystallography, X-Ray , Electrochemistry , Models, Molecular , Molecular Structure , Stereoisomerism
10.
Dalton Trans ; (12): 1221-8, 2007 Mar 28.
Article in English | MEDLINE | ID: mdl-17353954

ABSTRACT

In one synthetic step from the readily available 9-Me(2)SCH(2)-nido-7,8-C(2)B(9)H(11) (compound 1), the first representative of the eleven-vertex hypho family of tricarbaboranes, [2,5,12-C(3)B(8)H(15)][X] (X=[NMe4]+ or [PPh4]+) (compound 2), has been isolated in 32% yield and structurally characterised by single-crystal X-ray diffraction, multi-nuclear NMR spectroscopy, mass spectrometry, and computational methods. Both [NMe4]+ or [PPh4]+ salts of anion 2 were found to undergo degradative conversion to the [hypho-6,7-C(2)B(6)H(13)]- anion (anion 3) in alkaline medium. The [PPh4]+ salt of anion 2 converted quantitatively to the [6-CH3-arachno-5,10-C(2)B(8)H(12)]- anion (anion 4) if passed through a silica column or to the neutral 5-CH3-arachno-6,9-C(2)B(8)H(13) (compound 5) on treatment of its [NMe4]+ salt with dilute HCl. Moreover, the reaction of compound 2 with [RhCl2(C(5)Me(5))]2 afforded the eleven-vertex ruthenadicarbaborane [1-C(5)Me(5)-4-CH(3)-closo-1,2,3-RhC(2)B(8)H(9)] (compound 8). All these reactions resulted in an extrusion of one of the cluster carbon atoms into an exoskeletal position.

11.
Dalton Trans ; (5): 581-4, 2007 Feb 07.
Article in English | MEDLINE | ID: mdl-17225910

ABSTRACT

Alkynes R(1)R(2)C(2) react with the neutral monocarbaborane arachno-4-CB(8)H(14) (1) at elevated temperatures (115-120 degrees C) under the formation of the derivatives of the ten-vertex dicarbaborane nido-5,6-C(2)B(8)H(12) (2) of general formula 9-Me-5,6-R1,R2-nido-5,6-C(2)B(8)H(9) (where R1,R2 = H,H 2a; Me,Me 2b; Et,Et 2c, H,Ph 2d, and Ph,Ph 2e) in moderate yields (26-52%). Side reaction with PhC(2)H also yields 1-Ph-6-Me-closo-1,2-C(2)B(8)H(8) (3d). In contrast, the reaction between [arachno-4-CB(8)H(13)](-) anion ((-)) and PhC(2)H produces a mixture of the closo anions [1-CB7H8]- (4-) and [1-CB6H7]- (5-) (yields 32 and 24%, respectively). Individual compounds were isolated and purified by liquid chromatography and characterized by NMR spectroscopy ((11)B, (1)H and (13)C) combined with two-dimensional [(11)B-(11)B]-COSY and (1)H-{(11)B(selective)}NMR techniques.

12.
Dalton Trans ; (39): 4664-71, 2006 Oct 21.
Article in English | MEDLINE | ID: mdl-17028674

ABSTRACT

Reactions between closo-1,2-C(2)B(8)H(10) (1) and amines of general formulation R(1)R(2)NH (where R(1), R(2) = H, H; Me, H; t-Bu, H and Et, Et) resulted in a straightforward cluster expansion and formation of the 11-vertex arachno-azadicarbaboranes of the 1,1-R(1),R(2-)1,6,9-NC(2)B(8)H(11) (2) cluster constitution (where R(1), R(2) = H, H 2a; Me, H 2b; t-Bu, H 2c and Et, Et 2d) in yields 10-75%, depending on the nature of the amine used. The reactions are the first example of a direct closo to arachno transformation in the area of cluster-boron compounds. Compounds 2b and 2c were isolated in two isomeric forms anti- and syn- that differ in the positioning of the t-Bu substituent with respect to the bridging hydrogen site. Deprotonation of compounds 2 generally leads to removal of the bridging proton and formation of the [1,1-R(1),R(2-)1,6,9-NC(2)B(8)H(11)](-) (2-) anions that, in the case of the monoalkylated Me and t-Bu derivatives, adopt only an anti configuration. The structure of anti-2c was determined by X-ray diffraction analysis and the geometries of the parent compound and the corresponding syn and anti isomers were optimised at the RMP2/6-31G* level. The composition of all compounds is consistent with the results of mass spectrometry and multinuclear ((1)H and (11)B) spectroscopy complemented by two-dimensional [(11)B-(11)B]-COSY and (1)H{(11)B(selective)} NMR measurements. Experimental (11)B chemical shifts generally show acceptable agreement with theoretical values calculated by GIAO methods, in particular at GIAO-MP2/II, where possible.

13.
J Am Chem Soc ; 126(13): 4060-1, 2004 Apr 07.
Article in English | MEDLINE | ID: mdl-15053567

ABSTRACT

At 190 degrees C, formal sigma-bond metathesis between the B-CH3 bond in position 12 of the lithium monocarbadodecaborate derivative 1a and the C-Si(CH3)3 bond in p-bromophenyltrimethylsilane occurs and produces Si(CH3)4 and a salt of the arylated carborate anion 2, whose X-ray structure has been determined. The reaction requires the presence of active Li+ cations and does not occur with the cesium salt 1b or when 12-crown-4 is added to 1a. Possible mechanisms are briefly discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...