Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Sci Adv ; 10(6): eadk2685, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38324687

ABSTRACT

Transcription-replication conflicts (TRCs) induce formation of cotranscriptional RNA:DNA hybrids (R-loops) stabilized by G-quadruplexes (G4s) on the displaced DNA strand, which can cause fork stalling. Although it is known that these stalled forks can resume DNA synthesis in a process initiated by MUS81 endonuclease, how TRC-associated G4/R-loops are removed to allow fork passage remains unclear. Here, we identify the mismatch repair protein MutSß, an MLH1-PMS1 heterodimer termed MutLß, and the G4-resolving helicase FANCJ as factors that are required for MUS81-initiated restart of DNA replication at TRC sites in human cells. This DNA repair process depends on the G4-binding activity of MutSß, the helicase activity of FANCJ, and the binding of FANCJ to MLH1. Furthermore, we show that MutSß, MutLß, and MLH1-FANCJ interaction mediate FANCJ recruitment to G4s. These data suggest that MutSß, MutLß, and FANCJ act in conjunction to eliminate G4/R-loops at TRC sites, allowing replication restart.


Subject(s)
Fanconi Anemia Complementation Group Proteins , R-Loop Structures , Humans , Fanconi Anemia Complementation Group Proteins/genetics , Fanconi Anemia Complementation Group Proteins/metabolism , DNA Helicases/genetics , DNA Helicases/metabolism , DNA Replication , DNA/genetics
2.
Mol Oncol ; 18(1): 6-20, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37067201

ABSTRACT

Oncogene-induced replication stress has been recognized as a major cause of genome instability in cancer cells. Increased expression of cyclin E1 caused by amplification of the CCNE1 gene is a common cause of replication stress in various cancers. Protein phosphatase magnesium-dependent 1 delta (PPM1D) is a negative regulator of p53 and has been implicated in termination of the cell cycle checkpoint. Amplification of the PPM1D gene or frameshift mutations in its final exon promote tumorigenesis. Here, we show that PPM1D activity further increases the replication stress caused by overexpression of cyclin E1. In particular, we demonstrate that cells expressing a truncated mutant of PPM1D progress faster from G1 to S phase and fail to complete licensing of the replication origins. In addition, we show that transcription-replication collisions and replication fork slowing caused by CCNE1 overexpression are exaggerated in cells expressing the truncated PPM1D. Finally, replication speed and accumulation of focal DNA copy number alterations caused by induction of CCNE1 expression was rescued by pharmacological inhibition of PPM1D. We propose that increased activity of PPM1D suppresses the checkpoint function of p53 and thus promotes genome instability in cells expressing the CCNE1 oncogene.


Subject(s)
Neoplasms , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism , Cyclin E/genetics , Cyclin E/metabolism , Genomic Instability , Protein Phosphatase 2C/genetics , Protein Phosphatase 2C/metabolism
3.
Nat Commun ; 14(1): 1791, 2023 03 30.
Article in English | MEDLINE | ID: mdl-36997515

ABSTRACT

Elevated levels of reactive oxygen species (ROS) reduce replication fork velocity by causing dissociation of the TIMELESS-TIPIN complex from the replisome. Here, we show that ROS generated by exposure of human cells to the ribonucleotide reductase inhibitor hydroxyurea (HU) promote replication fork reversal in a manner dependent on active transcription and formation of co-transcriptional RNA:DNA hybrids (R-loops). The frequency of R-loop-dependent fork stalling events is also increased after TIMELESS depletion or a partial inhibition of replicative DNA polymerases by aphidicolin, suggesting that this phenomenon is due to a global replication slowdown. In contrast, replication arrest caused by HU-induced depletion of deoxynucleotides does not induce fork reversal but, if allowed to persist, leads to extensive R-loop-independent DNA breakage during S-phase. Our work reveals a link between oxidative stress and transcription-replication interference that causes genomic alterations recurrently found in human cancer.


Subject(s)
DNA Replication , DNA-Binding Proteins , Humans , Reactive Oxygen Species , S Phase/genetics , DNA-Binding Proteins/metabolism , Hydroxyurea/pharmacology , DNA
4.
Nucleic Acids Res ; 51(5): 2298-2318, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36807739

ABSTRACT

An elevated frequency of DNA replication defects is associated with diabetes and cancer. However, data linking these nuclear perturbations to the onset or progression of organ complications remained unexplored. Here, we report that RAGE (Receptor for Advanced Glycated Endproducts), previously believed to be an extracellular receptor, upon metabolic stress localizes to the damaged forks. There it interacts and stabilizes the minichromosome-maintenance (Mcm2-7) complex. Accordingly, RAGE deficiency leads to slowed fork progression, premature fork collapse, hypersensitivity to replication stress agents and reduction of viability, which was reversed by the reconstitution of RAGE. This was marked by the 53BP1/OPT-domain expression and the presence of micronuclei, premature loss-of-ciliated zones, increased incidences of tubular-karyomegaly, and finally, interstitial fibrosis. More importantly, the RAGE-Mcm2 axis was selectively compromised in cells expressing micronuclei in human biopsies and mouse models of diabetic nephropathy and cancer. Thus, the functional RAGE-Mcm2/7 axis is critical in handling replication stress in vitro and human disease.


Subject(s)
Diabetes Mellitus , Minichromosome Maintenance Complex Component 2 , Neoplasms , Receptor for Advanced Glycation End Products , Animals , Humans , Mice , Cell Cycle Proteins/metabolism , DNA Replication/genetics , Minichromosome Maintenance Complex Component 2/genetics , Minichromosome Maintenance Complex Component 2/metabolism , Minichromosome Maintenance Proteins/metabolism , Receptor for Advanced Glycation End Products/metabolism
5.
Nucleic Acids Res ; 50(21): 12274-12290, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36453994

ABSTRACT

R-loops are three-stranded nucleic acid structures composed of an RNA:DNA hybrid and displaced DNA strand. These structures can halt DNA replication when formed co-transcriptionally in the opposite orientation to replication fork progression. A recent study has shown that replication forks stalled by co-transcriptional R-loops can be restarted by a mechanism involving fork cleavage by MUS81 endonuclease, followed by ELL-dependent reactivation of transcription, and fork religation by the DNA ligase IV (LIG4)/XRCC4 complex. However, how R-loops are eliminated to allow the sequential restart of transcription and replication in this pathway remains elusive. Here, we identified the human DDX17 helicase as a factor that associates with R-loops and counteracts R-loop-mediated replication stress to preserve genome stability. We show that DDX17 unwinds R-loops in vitro and promotes MUS81-dependent restart of R-loop-stalled forks in human cells in a manner dependent on its helicase activity. Loss of DDX17 helicase induces accumulation of R-loops and the formation of R-loop-dependent anaphase bridges and micronuclei. These findings establish DDX17 as a component of the MUS81-LIG4-ELL pathway for resolution of R-loop-mediated transcription-replication conflicts, which may be involved in R-loop unwinding.


Subject(s)
DNA Replication , R-Loop Structures , Humans , DNA Replication/genetics , DNA Helicases/metabolism , Endonucleases/metabolism , DNA/metabolism , DEAD-box RNA Helicases/genetics , DEAD-box RNA Helicases/metabolism
6.
Cell Rep ; 39(1): 110602, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35385755

ABSTRACT

Up to 15% of human cancers maintain their telomeres through a telomerase-independent mechanism, termed "alternative lengthening of telomeres" (ALT) that relies on homologous recombination between telomeric sequences. Emerging evidence suggests that the recombinogenic nature of ALT telomeres results from the formation of RNA:DNA hybrids (R-loops) between telomeric DNA and the long-noncoding telomeric repeat-containing RNA (TERRA). Here, we show that the mismatch repair protein MutSß, a heterodimer of MSH2 and MSH3 subunits, is enriched at telomeres in ALT cancer cells, where it prevents the accumulation of telomeric G-quadruplex (G4) structures and R-loops. Cells depleted of MSH3 display increased incidence of R-loop-dependent telomere fragility and accumulation of telomeric C-circles. We also demonstrate that purified MutSß recognizes and destabilizes G4 structures in vitro. These data suggest that MutSß destabilizes G4 structures in ALT telomeres to regulate TERRA R-loops, which is a prerequisite for maintenance of telomere integrity during ALT.


Subject(s)
Neoplasms , RNA, Long Noncoding , DNA/metabolism , Humans , Neoplasms/genetics , R-Loop Structures , RNA, Long Noncoding/metabolism , Telomere/metabolism , Telomere Homeostasis
7.
Science ; 376(6592): 476-483, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35482866

ABSTRACT

Genotoxic therapy such as radiation serves as a frontline cancer treatment, yet acquired resistance that leads to tumor reoccurrence is frequent. We found that cancer cells maintain viability during irradiation by reversibly increasing genome-wide DNA breaks, thereby limiting premature mitotic progression. We identify caspase-activated DNase (CAD) as the nuclease inflicting these de novo DNA lesions at defined loci, which are in proximity to chromatin-modifying CCCTC-binding factor (CTCF) sites. CAD nuclease activity is governed through phosphorylation by DNA damage response kinases, independent of caspase activity. In turn, loss of CAD activity impairs cell fate decisions, rendering cancer cells vulnerable to radiation-induced DNA double-strand breaks. Our observations highlight a cancer-selective survival adaptation, whereby tumor cells deploy regulated DNA breaks to delimit the detrimental effects of therapy-evoked DNA damage.


Subject(s)
DNA Damage , Neoplasms , Chromatin , DNA/radiation effects , DNA Breaks, Double-Stranded , DNA Repair , Neoplasms/genetics
8.
Int J Mol Sci ; 22(7)2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33916766

ABSTRACT

R-loops are three-stranded structures generated by annealing of nascent transcripts to the template DNA strand, leaving the non-template DNA strand exposed as a single-stranded loop. Although R-loops play important roles in physiological processes such as regulation of gene expression, mitochondrial DNA replication, or immunoglobulin class switch recombination, dysregulation of the R-loop metabolism poses a threat to the stability of the genome. A previous study in yeast has shown that the homologous recombination machinery contributes to the formation of R-loops and associated chromosome instability. On the contrary, here, we demonstrate that depletion of the key homologous recombination factor, RAD51, as well as RAD51 inhibition by the B02 inhibitor did not prevent R-loop formation induced by the inhibition of spliceosome assembly in human cells. However, we noticed that treatment of cells with B02 resulted in RAD51-dependent accumulation of R-loops in an early G1 phase of the cell cycle accompanied by a decrease in the levels of chromatin-bound ORC2 protein, a component of the pre-replication complex, and an increase in DNA synthesis. Our results suggest that B02-induced R-loops might cause a premature origin firing.


Subject(s)
Chromosomal Instability/drug effects , DNA/biosynthesis , Enzyme Inhibitors/pharmacology , G1 Phase/drug effects , R-Loop Structures , Rad51 Recombinase , Cell Line, Tumor , Humans , Origin Recognition Complex/metabolism , Rad51 Recombinase/antagonists & inhibitors , Rad51 Recombinase/metabolism
9.
Nat Commun ; 11(1): 5117, 2020 10 09.
Article in English | MEDLINE | ID: mdl-33037203

ABSTRACT

Exposure of gastric epithelial cells to the bacterial carcinogen Helicobacter pylori causes DNA double strand breaks. Here, we show that H. pylori-induced DNA damage occurs co-transcriptionally in S-phase cells that activate NF-κB signaling upon innate immune recognition of the lipopolysaccharide biosynthetic intermediate ß-ADP-heptose by the ALPK1/TIFA signaling pathway. DNA damage depends on the bi-functional RfaE enzyme and the Cag pathogenicity island of H. pylori, is accompanied by replication fork stalling and can be observed also in primary cells derived from gastric organoids. Importantly, H. pylori-induced replication stress and DNA damage depend on the presence of co-transcriptional RNA/DNA hybrids (R-loops) that form in infected cells during S-phase as a consequence of ß-ADP-heptose/ ALPK1/TIFA/NF-κB signaling. H. pylori resides in close proximity to S-phase cells in the gastric mucosa of gastritis patients. Taken together, our results link bacterial infection and NF-κB-driven innate immune responses to R-loop-dependent replication stress and DNA damage.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Helicobacter pylori/pathogenicity , NF-kappa B/metabolism , Protein Kinases/metabolism , Adaptor Proteins, Signal Transducing/genetics , Bacterial Proteins/metabolism , Cell Line, Tumor , DNA/chemistry , DNA/genetics , DNA Damage , DNA Replication/drug effects , Floxuridine , Glycosyltransferases/metabolism , Helicobacter Infections/metabolism , Helicobacter Infections/microbiology , Helicobacter pylori/metabolism , Host-Pathogen Interactions/physiology , Humans , Lipopolysaccharides/metabolism , Mutation , NF-kappa B/genetics , Protein Kinases/genetics , Reactive Oxygen Species/metabolism , Stomach Neoplasms/genetics , Stomach Neoplasms/microbiology , Stomach Neoplasms/pathology
10.
Genes (Basel) ; 11(2)2020 02 21.
Article in English | MEDLINE | ID: mdl-32098287

ABSTRACT

RECQ5 belongs to the RecQ family of DNA helicases. It is conserved from Drosophila to humans and its deficiency results in genomic instability and cancer susceptibility in mice. Human RECQ5 is known for its ability to regulate homologous recombination by disrupting RAD51 nucleoprotein filaments. It also binds to RNA polymerase II (RNAPII) and negatively regulates transcript elongation by RNAPII. Here, we summarize recent studies implicating RECQ5 in the prevention and resolution of transcription-replication conflicts, a major intrinsic source of genomic instability during cancer development.


Subject(s)
RecQ Helicases/physiology , Animals , DNA/genetics , DNA/metabolism , DNA Replication , Genomic Instability , Humans , RecQ Helicases/genetics , RecQ Helicases/metabolism , Transcription, Genetic/genetics
11.
Mol Cell ; 77(3): 528-541.e8, 2020 02 06.
Article in English | MEDLINE | ID: mdl-31759821

ABSTRACT

Formation of co-transcriptional R-loops underlies replication fork stalling upon head-on transcription-replication encounters. Here, we demonstrate that RAD51-dependent replication fork reversal induced by R-loops is followed by the restart of semiconservative DNA replication mediated by RECQ1 and RECQ5 helicases, MUS81/EME1 endonuclease, RAD52 strand-annealing factor, the DNA ligase IV (LIG4)/XRCC4 complex, and the non-catalytic subunit of DNA polymerase δ, POLD3. RECQ5 disrupts RAD51 filaments assembled on stalled forks after RECQ1-mediated reverse branch migration, preventing a new round of fork reversal and facilitating fork cleavage by MUS81/EME1. MUS81-dependent DNA breaks accumulate in cells lacking RAD52 or LIG4 upon induction of R-loop formation, suggesting that RAD52 acts in concert with LIG4/XRCC4 to catalyze fork religation, thereby mediating replication restart. The resumption of DNA synthesis after R-loop-associated fork stalling also requires active transcription, the restoration of which depends on MUS81, RAD52, LIG4, and the transcription elongation factor ELL. These findings provide mechanistic insights into transcription-replication conflict resolution.


Subject(s)
DNA Replication/physiology , R-Loop Structures/genetics , Rad51 Recombinase/metabolism , Cell Line, Tumor , DNA Ligases/metabolism , DNA Polymerase III/metabolism , DNA Replication/genetics , DNA-Binding Proteins/metabolism , Endodeoxyribonucleases/metabolism , Endonucleases/genetics , Endonucleases/metabolism , HeLa Cells , Humans , R-Loop Structures/physiology , Rad51 Recombinase/genetics , Rad51 Recombinase/physiology , Rad52 DNA Repair and Recombination Protein/metabolism , RecQ Helicases/metabolism , RecQ Helicases/physiology , Transcription, Genetic/genetics
12.
Mol Cell ; 73(4): 670-683.e12, 2019 02 21.
Article in English | MEDLINE | ID: mdl-30639241

ABSTRACT

Cellular mechanisms that safeguard genome integrity are often subverted in cancer. To identify cancer-related genome caretakers, we employed a convergent multi-screening strategy coupled to quantitative image-based cytometry and ranked candidate genes according to multivariate readouts reflecting viability, proliferative capacity, replisome integrity, and DNA damage signaling. This unveiled regulators of replication stress resilience, including components of the pre-mRNA cleavage and polyadenylation complex. We show that deregulation of pre-mRNA cleavage impairs replication fork speed and leads to excessive origin activity, rendering cells highly dependent on ATR function. While excessive formation of RNA:DNA hybrids under these conditions was tightly associated with replication-stress-induced DNA damage, inhibition of transcription rescued fork speed, origin activation, and alleviated replication catastrophe. Uncoupling of pre-mRNA cleavage from co-transcriptional processing and export also protected cells from replication-stress-associated DNA damage, suggesting that pre-mRNA cleavage provides a mechanism to efficiently release nascent transcripts and thereby prevent gene gating-associated genomic instability.


Subject(s)
DNA Damage , DNA Replication , Genomic Instability , Neoplasms/genetics , RNA Cleavage , RNA Precursors/genetics , RNA, Messenger/genetics , RNA, Neoplasm/genetics , Active Transport, Cell Nucleus , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , DNA, Neoplasm/genetics , DNA, Neoplasm/metabolism , DNA-Binding Proteins , Gene Expression Regulation, Neoplastic , HeLa Cells , Humans , Neoplasms/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleic Acid Heteroduplexes/genetics , Nucleic Acid Heteroduplexes/metabolism , Polyadenylation , RNA Precursors/biosynthesis , RNA, Messenger/biosynthesis , RNA, Neoplasm/biosynthesis , RNA-Binding Proteins
13.
Nat Commun ; 8(1): 859, 2017 10 16.
Article in English | MEDLINE | ID: mdl-29038466

ABSTRACT

Besides its role in homologous recombination, the tumor suppressor BRCA2 protects stalled replication forks from nucleolytic degradation. Defective fork stability contributes to chemotherapeutic sensitivity of BRCA2-defective tumors by yet-elusive mechanisms. Using DNA fiber spreading and direct visualization of replication intermediates, we report that reversed replication forks are entry points for fork degradation in BRCA2-defective cells. Besides MRE11 and PTIP, we show that RAD52 promotes stalled fork degradation and chromosomal breakage in BRCA2-defective cells. Inactivation of these factors restores reversed fork frequency and chromosome integrity in BRCA2-defective cells. Conversely, impairing fork reversal prevents fork degradation, but increases chromosomal breakage, uncoupling fork protection, and chromosome stability. We propose that BRCA2 is dispensable for RAD51-mediated fork reversal, but assembles stable RAD51 nucleofilaments on regressed arms, to protect them from degradation. Our data uncover the physiopathological relevance of fork reversal and illuminate a complex interplay of homologous recombination factors in fork remodeling and stability.BRCA2 is involved in both homologous recombination (HR) and the protection of stalled replication forks from degradation. Here the authors reveal how HR factors cooperate in fork remodeling, showing that BRCA2 supports RAD51 loading on the regressed arms of reversed replication forks to protect them from degradation.


Subject(s)
BRCA2 Protein/metabolism , Carrier Proteins/metabolism , DNA Replication , Homologous Recombination , MRE11 Homologue Protein/metabolism , Nuclear Proteins/metabolism , Rad51 Recombinase/metabolism , Rad52 DNA Repair and Recombination Protein/metabolism , Cell Line, Tumor , Chromosomal Instability , DNA-Binding Proteins , Humans
14.
Mol Cell ; 66(5): 658-671.e8, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575661

ABSTRACT

The MUS81-EME1 endonuclease cleaves late replication intermediates at common fragile sites (CFSs) during early mitosis to trigger DNA-repair synthesis that ensures faithful chromosome segregation. Here, we show that these DNA transactions are promoted by RECQ5 DNA helicase in a manner dependent on its Ser727 phosphorylation by CDK1. Upon replication stress, RECQ5 associates with CFSs in early mitosis through its physical interaction with MUS81 and promotes MUS81-dependent mitotic DNA synthesis. RECQ5 depletion or mutational inactivation of its ATP-binding site, RAD51-interacting domain, or phosphorylation site causes excessive binding of RAD51 to CFS loci and impairs CFS expression. This leads to defective chromosome segregation and accumulation of CFS-associated DNA damage in G1 cells. Biochemically, RECQ5 alleviates the inhibitory effect of RAD51 on 3'-flap DNA cleavage by MUS81-EME1 through its RAD51 filament disruption activity. These data suggest that RECQ5 removes RAD51 filaments stabilizing stalled replication forks at CFSs and hence facilitates CFS cleavage by MUS81-EME1.


Subject(s)
Chromosome Fragile Sites , DNA Repair , DNA-Binding Proteins/metabolism , DNA/biosynthesis , Endonucleases/metabolism , Mitosis , RecQ Helicases/metabolism , Replication Origin , Binding Sites , CDC2 Protein Kinase , Chromosomal Instability , Chromosome Segregation , Cyclin-Dependent Kinases/metabolism , DNA/genetics , DNA Damage , DNA-Binding Proteins/genetics , Endodeoxyribonucleases/metabolism , Endonucleases/genetics , HEK293 Cells , HeLa Cells , Humans , Phosphorylation , Protein Binding , RNA Interference , Rad51 Recombinase/metabolism , RecQ Helicases/genetics , Time Factors , Transfection
15.
Sci Rep ; 7: 41663, 2017 01 27.
Article in English | MEDLINE | ID: mdl-28128338

ABSTRACT

B-Myb, a highly conserved member of the Myb transcription factor family, is expressed ubiquitously in proliferating cells and controls the cell cycle dependent transcription of G2/M-phase genes. Deregulation of B-Myb has been implicated in oncogenesis and loss of genomic stability. We have identified B-Myb as a novel interaction partner of the Mre11-Rad50-Nbs1 (MRN) complex, a key player in the repair of DNA double strand breaks. We show that B-Myb directly interacts with the Nbs1 subunit of the MRN complex and is recruited transiently to DNA-damage sites. In response to DNA-damage B-Myb is phosphorylated by protein kinase GSK3ß and released from the MRN complex. A B-Myb mutant that cannot be phosphorylated by GSK3ß disturbs the regulation of pro-mitotic B-Myb target genes and leads to inappropriate mitotic entry in response to DNA-damage. Overall, our work suggests a novel function of B-Myb in the cellular DNA-damage signalling.


Subject(s)
Cell Cycle Proteins/metabolism , DNA Damage , DNA Repair Enzymes/metabolism , DNA-Binding Proteins/metabolism , MRE11 Homologue Protein/metabolism , Nuclear Proteins/metabolism , Signal Transduction , Trans-Activators/metabolism , Acid Anhydride Hydrolases , Amino Acid Sequence , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites , Cell Cycle Proteins/chemistry , Cell Cycle Proteins/genetics , Cell Line , DNA Breaks, Double-Stranded , DNA Repair , DNA Repair Enzymes/chemistry , DNA-Binding Proteins/chemistry , Gene Expression Regulation , Glycogen Synthase Kinase 3 beta/metabolism , Humans , MRE11 Homologue Protein/chemistry , Mitosis/genetics , Models, Biological , Multiprotein Complexes/metabolism , Mutation , Nuclear Proteins/chemistry , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Trans-Activators/chemistry , Trans-Activators/genetics
16.
Biophys Chem ; 225: 20-26, 2017 06.
Article in English | MEDLINE | ID: mdl-27876204

ABSTRACT

DNA replication is the most vulnerable process of DNA metabolism in proliferating cells and therefore it is tightly controlled and coordinated with processes that maintain genomic stability. Human RecQ helicases are among the most important factors involved in the maintenance of replication fork integrity, especially under conditions of replication stress. RecQ helicases promote recovery of replication forks being stalled due to different replication roadblocks of either exogenous or endogenous source. They prevent generation of aberrant replication fork structures and replication fork collapse, and are involved in proper checkpoint signaling. The essential role of human RecQ helicases in the genome maintenance during DNA replication is underlined by association of defects in their function with cancer predisposition.


Subject(s)
DNA Replication , RecQ Helicases/physiology , Genomic Instability , Humans , Neoplasms/etiology
17.
EMBO J ; 35(23): 2584-2601, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27797818

ABSTRACT

Homologous recombination (HR) is a key pathway that repairs DNA double-strand breaks (DSBs) and helps to restart stalled or collapsed replication forks. How HR supports replication upon genotoxic stress is not understood. Using in vivo and in vitro approaches, we show that the MMS22L-TONSL heterodimer localizes to replication forks under unperturbed conditions and its recruitment is increased during replication stress in human cells. MMS22L-TONSL associates with replication protein A (RPA)-coated ssDNA, and the MMS22L subunit directly interacts with the strand exchange protein RAD51. MMS22L is required for proper RAD51 assembly at DNA damage sites in vivo, and HR-mediated repair of stalled forks is abrogated in cells expressing a MMS22L mutant deficient in RAD51 interaction. Similar to the recombination mediator BRCA2, recombinant MMS22L-TONSL limits the assembly of RAD51 on dsDNA, which stimulates RAD51-ssDNA nucleoprotein filament formation and RAD51-dependent strand exchange activity in vitro Thus, by specifically regulating RAD51 activity at uncoupled replication forks, MMS22L-TONSL stabilizes perturbed replication forks by promoting replication fork reversal and stimulating their HR-mediated restart in vivo.


Subject(s)
DNA-Binding Proteins/metabolism , NF-kappa B/metabolism , Nuclear Proteins/metabolism , Rad51 Recombinase/metabolism , Recombination, Genetic , DNA Damage , DNA Repair , DNA Replication , HeLa Cells , Humans , Protein Interaction Mapping , Protein Multimerization
18.
J Cell Biol ; 214(4): 401-15, 2016 08 15.
Article in English | MEDLINE | ID: mdl-27502483

ABSTRACT

Collisions between replication and transcription machineries represent a significant source of genomic instability. RECQ5 DNA helicase binds to RNA-polymerase (RNAP) II during transcription elongation and suppresses transcription-associated genomic instability. Here, we show that RECQ5 also associates with RNAPI and enforces the stability of ribosomal DNA arrays. We demonstrate that RECQ5 associates with transcription complexes in DNA replication foci and counteracts replication fork stalling in RNAPI- and RNAPII-transcribed genes, suggesting that RECQ5 exerts its genome-stabilizing effect by acting at sites of replication-transcription collisions. Moreover, RECQ5-deficient cells accumulate RAD18 foci and BRCA1-dependent RAD51 foci that are both formed at sites of interference between replication and transcription and likely represent unresolved replication intermediates. Finally, we provide evidence for a novel mechanism of resolution of replication-transcription collisions wherein the interaction between RECQ5 and proliferating cell nuclear antigen (PCNA) promotes RAD18-dependent PCNA ubiquitination and the helicase activity of RECQ5 promotes the processing of replication intermediates.


Subject(s)
DNA Replication , RecQ Helicases/metabolism , Transcription, Genetic , BRCA1 Protein/metabolism , DNA, Ribosomal/metabolism , DNA-Binding Proteins/metabolism , DNA-Directed DNA Polymerase/metabolism , DNA-Directed RNA Polymerases/metabolism , HEK293 Cells , Humans , Models, Biological , Multienzyme Complexes/metabolism , Open Reading Frames/genetics , Proliferating Cell Nuclear Antigen/metabolism , Protein Interaction Domains and Motifs , RNA Precursors/genetics , Rad51 Recombinase/metabolism , Stress, Physiological/genetics , Transcription Elongation, Genetic , Ubiquitin-Protein Ligases/metabolism , Ubiquitination
19.
Biophys J ; 110(12): 2585-2596, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27332117

ABSTRACT

RECQ5 is one of five members of the RecQ family of helicases in humans, which include RECQ1, Bloom (BLM), Werner (WRN), RECQ4, and RECQ5. Both WRN and BLM have been shown to resolve G-quadruplex (GQ) structures. Deficiencies in unfolding GQ are known to result in DNA breaks and genomic instability, which are prominent in Werner and Bloom syndromes. RECQ5 is significant in suppressing sister chromatid exchanges during homologous recombination but its GQ unfolding activity are not known. We performed single-molecule studies under different salt (50-150 mM KCl or NaCl) and ATP concentrations on different GQ constructs including human telomeric GQ (with different overhangs and polarities) and GQ formed by thrombin-binding aptamer to investigate this activity. These studies demonstrated a RECQ5-mediated GQ unfolding activity that was an order of magnitude weaker than BLM and WRN. On the other hand, BLM and RECQ5 demonstrated similar single-stranded DNA (ssDNA) reeling activities that were not coupled to GQ unfolding. These results demonstrate overlap in function between these RecQ helicases; however, the relatively weak GQ destabilization activity of RECQ5 compared to BLM and WRN suggests that RECQ5 is not primarily associated with GQ destabilization, but could substitute for the more efficient helicases under conditions where their activity is compromised. In addition, these results implicate a more general role for helicase-promoted ssDNA reeling activity such as removal of proteins at the replication fork, whereas the association of ssDNA reeling with GQ destabilization is more helicase-specific.


Subject(s)
DNA/metabolism , G-Quadruplexes , RecQ Helicases/metabolism , Adenosine Triphosphate/metabolism , Humans , Potassium Chloride/chemistry , Sodium Chloride/chemistry , Telomere/metabolism , Werner Syndrome Helicase/metabolism
20.
Mol Cell ; 59(4): 603-14, 2015 Aug 20.
Article in English | MEDLINE | ID: mdl-26212458

ABSTRACT

Ataxia telangiectasia-mutated and Rad3-related (ATR) protein kinase, a master regulator of DNA-damage response, is activated by RPA-coated single-stranded DNA (ssDNA) generated at stalled replication forks or DNA double-strand breaks (DSBs). Here, we identify the mismatch-binding protein MutSß, a heterodimer of MSH2 and MSH3, as a key player in this process. MSH2 and MSH3 form a complex with ATR and its regulatory partner ATRIP, and their depletion compromises the formation of ATRIP foci and phosphorylation of ATR substrates in cells responding to replication-associated DSBs. Purified MutSß binds to hairpin loop structures that persist in RPA-ssDNA complexes and promotes ATRIP recruitment. Mutations in the mismatch-binding domain of MSH3 abolish the binding of MutSß to DNA hairpin loops and its ability to promote ATR activation by ssDNA. These results suggest that hairpin loops might form in ssDNA generated at sites of DNA damage and trigger ATR activation in a process mediated by MutSß.


Subject(s)
DNA Breaks, Double-Stranded , DNA-Binding Proteins/physiology , MutS Homolog 2 Protein/physiology , Ataxia Telangiectasia Mutated Proteins/metabolism , DNA Repair , DNA, Single-Stranded/chemistry , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/metabolism , Enzyme Activation , HEK293 Cells , Homologous Recombination , Humans , MutS Homolog 2 Protein/chemistry , MutS Homolog 3 Protein , Phosphorylation , Protein Binding , Protein Processing, Post-Translational , Protein Transport
SELECTION OF CITATIONS
SEARCH DETAIL
...