Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(20)2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37892019

ABSTRACT

The preoperative prediction of resectability pancreatic ductal adenocarcinoma (PDAC) is challenging. This retrospective single-center study examined tumor and vessel radiomics to predict the resectability of PDAC in chemo-naïve patients. The tumor and adjacent arteries and veins were segmented in the portal-venous phase of contrast-enhanced CT scans, and radiomic features were extracted. Features were selected via stability and collinearity testing, and least absolute shrinkage and selection operator application (LASSO). Three models, using tumor features, vessel features, and a combination of both, were trained with the training set (N = 86) to predict resectability. The results were validated with the test set (N = 15) and compared to the multidisciplinary team's (MDT) performance. The vessel-features-only model performed best, with an AUC of 0.92 and sensitivity and specificity of 97% and 73%, respectively. Test set validation showed a sensitivity and specificity of 100% and 88%, respectively. The combined model was as good as the vessel model (AUC = 0.91), whereas the tumor model showed poor performance (AUC = 0.76). The MDT's prediction reached a sensitivity and specificity of 97% and 84% for the training set and 88% and 100% for the test set, respectively. Our clinician-independent vessel-based radiomics model can aid in predicting resectability and shows performance comparable to that of the MDT. With these encouraging results, improved, automated, and generalizable models can be developed that reduce workload and can be applied in non-expert hospitals.

2.
J Magn Reson Imaging ; 58(6): 1739-1749, 2023 12.
Article in English | MEDLINE | ID: mdl-36928988

ABSTRACT

BACKGROUND: While several methods have been proposed for automated assessment of breast-cancer response to neoadjuvant chemotherapy on breast MRI, limited information is available about their performance across multiple institutions. PURPOSE: To assess the value and robustness of deep learning-derived volumes of locally advanced breast cancer (LABC) on MRI to infer the presence of residual disease after neoadjuvant chemotherapy. STUDY TYPE: Retrospective. SUBJECTS: Training cohort: 102 consecutive female patients with LABC scheduled for neoadjuvant chemotherapy (NAC) from a single institution (age: 25-73 years). Independent testing cohort: 55 consecutive female patients with LABC from four institutions (age: 25-72 years). FIELD STRENGTH/SEQUENCE: Training cohort: single vendor 1.5 T or 3.0 T. Testing cohort: multivendor 3.0 T. Gradient echo dynamic contrast-enhanced sequences. ASSESSMENT: A convolutional neural network (nnU-Net) was trained to segment LABC. Based on resulting tumor volumes, an extremely randomized tree model was trained to assess residual cancer burden (RCB)-0/I vs. RCB-II/III. An independent model was developed using functional tumor volume (FTV). Models were tested on an independent testing cohort and response assessment performance and robustness across multiple institutions were assessed. STATISTICAL TESTS: The receiver operating characteristic (ROC) was used to calculate the area under the ROC curve (AUC). DeLong's method was used to compare AUCs. Correlations were calculated using Pearson's method. P values <0.05 were considered significant. RESULTS: Automated segmentation resulted in a median (interquartile range [IQR]) Dice score of 0.87 (0.62-0.93), with similar volumetric measurements (R = 0.95, P < 0.05). Automated volumetric measurements were significantly correlated with FTV (R = 0.80). Tumor volume-derived from deep learning of DCE-MRI was associated with RCB, yielding an AUC of 0.76 to discriminate between RCB-0/I and RCB-II/III, performing similar to the FTV-based model (AUC = 0.77, P = 0.66). Performance was comparable across institutions (IQR AUC: 0.71-0.84). DATA CONCLUSION: Deep learning-based segmentation estimates changes in tumor load on DCE-MRI that are associated with RCB after NAC and is robust against variations between institutions. EVIDENCE LEVEL: 2. TECHNICAL EFFICACY: Stage 4.


Subject(s)
Breast Neoplasms , Deep Learning , Humans , Adult , Middle Aged , Aged , Female , Breast Neoplasms/pathology , Retrospective Studies , Neoplasm, Residual/diagnostic imaging , Treatment Outcome , Magnetic Resonance Imaging/methods , Neoadjuvant Therapy/methods
3.
BMJ Open ; 12(9): e061334, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127090

ABSTRACT

INTRODUCTION: The response to neoadjuvant chemotherapy (NAC) in breast cancer has important prognostic implications. Dynamic prediction of tumour regression by NAC may allow for adaption of the treatment plan before completion, or even before the start of treatment. Such predictions may help prevent overtreatment and related toxicity and correct for undertreatment with ineffective regimens. Current imaging methods are not able to fully predict the efficacy of NAC. To successfully improve response prediction, tumour biology and heterogeneity as well as treatment-induced changes have to be considered. In the LIMA study, multiparametric MRI will be combined with liquid biopsies. In addition to conventional clinical and pathological information, these methods may give complementary information at multiple time points during treatment. AIM: To combine multiparametric MRI and liquid biopsies in patients with breast cancer to predict residual cancer burden (RCB) after NAC, in adjunct to standard clinico-pathological information. Predictions will be made before the start of NAC, approximately halfway during treatment and after completion of NAC. METHODS: In this multicentre prospective observational study we aim to enrol 100 patients. Multiparametric MRI will be performed prior to NAC, approximately halfway and after completion of NAC. Liquid biopsies will be obtained immediately prior to every cycle of chemotherapy and after completion of NAC. The primary endpoint is RCB in the surgical resection specimen following NAC. Collected data will primarily be analysed using multivariable techniques such as penalised regression techniques. ETHICS AND DISSEMINATION: Medical Research Ethics Committee Utrecht has approved this study (NL67308.041.19). Informed consent will be obtained from each participant. All data are anonymised before publication. The findings of this study will be submitted to international peer-reviewed journals. TRIAL REGISTRATION NUMBER: NCT04223492.


Subject(s)
Breast Neoplasms , Multiparametric Magnetic Resonance Imaging , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Female , Humans , Liquid Biopsy , Magnetic Resonance Imaging/methods , Multicenter Studies as Topic , Neoadjuvant Therapy/methods , Observational Studies as Topic , Prospective Studies , Treatment Outcome
4.
Front Cardiovasc Med ; 8: 807728, 2021.
Article in English | MEDLINE | ID: mdl-35127868

ABSTRACT

The Multi-Ethnic Study of Atherosclerosis (MESA), begun in 2000, was the first large cohort study to incorporate cardiovascular magnetic resonance (CMR) to study the mechanisms of cardiovascular disease in over 5,000 initially asymptomatic participants, and there is now a wealth of follow-up data over 20 years. However, the imaging technology used to generate the CMR images is no longer in routine use, and methods trained on modern data fail when applied to such legacy datasets. This study aimed to develop a fully automated CMR analysis pipeline that leverages the ability of machine learning algorithms to enable extraction of additional information from such a large-scale legacy dataset, expanding on the original manual analyses. We combined the original study analyses with new annotations to develop a set of automated methods for customizing 3D left ventricular (LV) shape models to each CMR exam and build a statistical shape atlas. We trained VGGNet convolutional neural networks using a transfer learning sequence between two-chamber, four-chamber, and short-axis MRI views to detect landmarks. A U-Net architecture was used to detect the endocardial and epicardial boundaries in short-axis images. The landmark detection network accurately predicted mitral valve and right ventricular insertion points with average error distance <2.5 mm. The agreement of the network with two observers was excellent (intraclass correlation coefficient >0.9). The segmentation network produced average Dice score of 0.9 for both myocardium and LV cavity. Differences between the manual and automated analyses were small, i.e., <1.0 ± 2.6 mL/m2 for indexed LV volume, 3.0 ± 6.4 g/m2 for indexed LV mass, and 0.6 ± 3.3% for ejection fraction. In an independent atlas validation dataset, the LV atlas built from the fully automated pipeline showed similar statistical relationships to an atlas built from the manual analysis. Hence, the proposed pipeline is not only a promising framework to automatically assess additional measures of ventricular function, but also to study relationships between cardiac morphologies and future cardiac events, in a large-scale population study.

5.
Sci Rep ; 10(1): 18095, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33093572

ABSTRACT

To purpose of this paper was to assess the feasibility of volumetric breast density estimations on MRI without segmentations accompanied with an explainability step. A total of 615 patients with breast cancer were included for volumetric breast density estimation. A 3-dimensional regression convolutional neural network (CNN) was used to estimate the volumetric breast density. Patients were split in training (N = 400), validation (N = 50), and hold-out test set (N = 165). Hyperparameters were optimized using Neural Network Intelligence and augmentations consisted of translations and rotations. The estimated densities were evaluated to the ground truth using Spearman's correlation and Bland-Altman plots. The output of the CNN was visually analyzed using SHapley Additive exPlanations (SHAP). Spearman's correlation between estimated and ground truth density was ρ = 0.81 (N = 165, P < 0.001) in the hold-out test set. The estimated density had a median bias of 0.70% (95% limits of agreement = - 6.8% to 5.0%) to the ground truth. SHAP showed that in correct density estimations, the algorithm based its decision on fibroglandular and fatty tissue. In incorrect estimations, other structures such as the pectoral muscle or the heart were included. To conclude, it is feasible to automatically estimate volumetric breast density on MRI without segmentations, and to provide accompanying explanations.


Subject(s)
Breast Density , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/pathology , Deep Learning , Magnetic Resonance Imaging/methods , Neural Networks, Computer , Adult , Aged , Aged, 80 and over , Algorithms , Female , Follow-Up Studies , Humans , Image Processing, Computer-Assisted/methods , Middle Aged , Neoplasm Invasiveness , Prognosis , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...