Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
PLoS One ; 14(12): e0226435, 2019.
Article in English | MEDLINE | ID: mdl-31869378

ABSTRACT

Acute myeloid leukemia (AML) is characterized by recurrent mutations that affect normal hematopoiesis. The analysis of human AMLs has mostly been performed using end-point materials, such as cell lines and patient derived AMLs that also carry additional contributing mutations. The molecular effects of a single oncogenic hit, such as expression of the AML associated oncoprotein AML1-ETO on hematopoietic development and transformation into a (pre-) leukemic state still needs further investigation. Here we describe the development and characterization of an induced pluripotent stem cell (iPSC) system that allows in vitro differentiation towards different mature myeloid cell types such as monocytes and granulocytes. During in vitro differentiation we expressed the AML1-ETO fusion protein and examined the effects of the oncoprotein on differentiation and the underlying alterations in the gene program at 8 different time points. Our analysis revealed that AML1-ETO as a single oncogenic hit in a non-mutated background blocks granulocytic differentiation, deregulates the gene program via altering the acetylome of the differentiating granulocytic cells, and induces t(8;21) AML associated leukemic characteristics. Together, these results reveal that inducible oncogene expression during in vitro differentiation of iPS cells provides a valuable platform for analysis of aberrant regulation in disease.


Subject(s)
Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Core Binding Factor Alpha 2 Subunit/physiology , Granulocytes/physiology , Induced Pluripotent Stem Cells/physiology , Oncogene Proteins, Fusion/physiology , RUNX1 Translocation Partner 1 Protein/physiology , Transcriptome , Cell Proliferation/genetics , Cells, Cultured , Core Binding Factor Alpha 2 Subunit/genetics , Granulocytes/metabolism , Humans , Leukemia, Myeloid, Acute/genetics , Leukopoiesis/genetics , Monocytes/physiology , Myelopoiesis/genetics , Oncogene Proteins, Fusion/genetics , Oncogenes/physiology , RUNX1 Translocation Partner 1 Protein/genetics , Transcriptome/genetics , Transfection
2.
Cell Rep ; 26(4): 1059-1069.e6, 2019 01 22.
Article in English | MEDLINE | ID: mdl-30673601

ABSTRACT

Global investigation of histone marks in acute myeloid leukemia (AML) remains limited. Analyses of 38 AML samples through integrated transcriptional and chromatin mark analysis exposes 2 major subtypes. One subtype is dominated by patients with NPM1 mutations or MLL-fusion genes, shows activation of the regulatory pathways involving HOX-family genes as targets, and displays high self-renewal capacity and stemness. The second subtype is enriched for RUNX1 or spliceosome mutations, suggesting potential interplay between the 2 aberrations, and mainly depends on IRF family regulators. Cellular consequences in prognosis predict a relatively worse outcome for the first subtype. Our integrated profiling establishes a rich resource to probe AML subtypes on the basis of expression and chromatin data.


Subject(s)
Chromatin , Core Binding Factor Alpha 2 Subunit , Leukemia, Myeloid, Acute , Mutation , Nuclear Proteins , Oncogene Proteins, Fusion , Chromatin/genetics , Chromatin/metabolism , Chromatin/pathology , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Humans , Leukemia, Myeloid, Acute/classification , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Nucleophosmin , Oncogene Proteins, Fusion/genetics , Oncogene Proteins, Fusion/metabolism
3.
Front Immunol ; 9: 1420, 2018.
Article in English | MEDLINE | ID: mdl-29988341

ABSTRACT

Dendritic cell (DC)-based immunotherapy makes use of the DC's ability to direct the adaptive immune response toward activation or inhibition. DCs perform this immune orchestration in part by secretion of selected cytokines. The most potent anti-inflammatory cytokine interleukin-10 (IL-10) is under tight regulation, as it needs to be predominantly expressed during the resolution phase of the immune response. Currently it is not clear whether there is active suppression of IL-10 by DCs at the initial pro-inflammatory stage of the immune response. Previously, knockdown of the DC-specific transcription factor DC-SCRIPT has been demonstrated to mediate an extensive increase in IL-10 production upon encounter with pro-inflammatory immune stimuli. Here, we explored how DC-SCRIPT contributes to IL-10 suppression under pro-inflammatory conditions by applying chromatin immunoprecipitation sequencing analysis of DC-SCRIPT and the epigenetic marks H3K4me3 and H3K27ac in human DCs. The data showed binding of DC-SCRIPT to a GA-rich motif at H3K27ac-marked genomic enhancers that associated with genes encoding MAPK dual-specificity phosphatases (DUSPs). Functional studies revealed that upon knockdown of DC-SCRIPT, human DCs express much less DUSP4 and exhibit increased phosphorylation of the three major MAPKs (ERK, JNK, and p38). Enhanced ERK signaling in DC-SCRIPT-knockdown-DCs led to higher production of IL-10, which was reverted by rescuing DUSP4 expression. Finally, DC-SCRIPT-knockdown-DCs induced less IFN-γ and increased IL-10 production in naïve T cells, indicative for a more anti-inflammatory phenotype. In conclusion, we have delineated a new mechanism by which DC-SCRIPT allows DCs to limit IL-10 production under inflammatory conditions and potentiate pro-inflammatory Th1 responses. These insights may be exploited to improve DC-based immunotherapies.

4.
Oncotarget ; 9(39): 25630-25646, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29876013

ABSTRACT

Epigenetic alterations have been associated with both pathogenesis and progression of cancer. By screening of library compounds, we identified a novel hybrid epi-drug MC2884, a HAT/EZH2 inhibitor, able to induce bona fide cancer-selective cell death in both solid and hematological cancers in vitro, ex vivo and in vivo xenograft models. Anticancer action was due to an epigenome modulation by H3K27me3, H3K27ac, H3K9/14ac decrease, and to caspase-dependent apoptosis induction. MC2884 triggered mitochondrial pathway apoptosis by up-regulation of cleaved-BID, and strong down-regulation of BCL2. Even aggressive models of cancer, such as p53-/- or TET2-/- cells, responded to MC2884, suggesting MC2884 therapeutic potential also for the therapy of TP53 or TET2-deficient human cancers. MC2884 induced massive apoptosis in ex vivo human primary leukemia blasts with poor prognosis in vivo, by targeting BCL2 expression. MC2884-treatment reduced acetylation of the BCL2 promoter at higher level than combined p300 and EZH2 inhibition. This suggests a key role for BCL-2 reduction in potentiating responsiveness, also in combination therapy with BCL2 inhibitors. Finally, we identified both the mechanism of MC2884 action as well as a potential therapeutic scheme of its use. Altogether, this provides proof of concept for the use of epi-drugs coupled with epigenome analyses to 'personalize' precision medicine.

5.
Oncotarget ; 9(39): 25647-25660, 2018 May 22.
Article in English | MEDLINE | ID: mdl-29876014

ABSTRACT

Epigenomic alterations have been associated with both pathogenesis and progression of cancer. Here, we analyzed the epigenome of two high-risk APL (hrAPL) patients and compared it to non-high-risk APL cases. Despite the lack of common genetic signatures, we found that human hrAPL blasts from patients with extremely poor prognosis display specific patterns of histone H3 acetylation, specifically hyperacetylation at a common set of enhancer regions. In addition, unique profiles of the repressive marks H3K27me3 and DNA methylation were exposed in high-risk APLs. Epigenetic comparison with low/intermediate-risk APLs and AMLs revealed hrAPL-specific patterns of histone acetylation and DNA methylation, suggesting these could be further developed into markers for clinical identification. The epigenetic drug MC2884, a newly generated general HAT/EZH2 inhibitor, induces apoptosis of high-risk APL blasts and reshapes their epigenomes by targeting both active and repressive marks. Together, our analysis uncovers distinctive epigenome signatures of hrAPL patients, and provides proof of concept for use of epigenome profiling coupled to epigenetic drugs to 'personalize' precision medicine.

6.
Cell Rep ; 17(8): 2087-2100, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27851970

ABSTRACT

The t(8;21) acute myeloid leukemia (AML)-associated oncoprotein AML1-ETO disrupts normal hematopoietic differentiation. Here, we have investigated its effects on the transcriptome and epigenome in t(8,21) patient cells. AML1-ETO binding was found at promoter regions of active genes with high levels of histone acetylation but also at distal elements characterized by low acetylation levels and binding of the hematopoietic transcription factors LYL1 and LMO2. In contrast, ERG, FLI1, TAL1, and RUNX1 bind at all AML1-ETO-occupied regulatory regions, including those of the AML1-ETO gene itself, suggesting their involvement in regulating AML1-ETO expression levels. While expression of AML1-ETO in myeloid differentiated induced pluripotent stem cells (iPSCs) induces leukemic characteristics, overexpression increases cell death. We find that expression of wild-type transcription factors RUNX1 and ERG in AML is required to prevent this oncogene overexpression. Together our results show that the interplay of the epigenome and transcription factors prevents apoptosis in t(8;21) AML cells.


Subject(s)
Apoptosis/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoiesis/genetics , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/metabolism , RUNX1 Translocation Partner 1 Protein/metabolism , Translocation, Genetic , Acetylation , Base Sequence , Cell Line, Tumor , Cell Lineage/genetics , Cell Survival/genetics , Chromosomes, Human, Pair 21/genetics , Chromosomes, Human, Pair 8/genetics , Gene Knockdown Techniques , Genome, Human , Histone Deacetylases/metabolism , Humans , Leukemia, Myeloid, Acute/pathology , Oncogenes , Promoter Regions, Genetic , Protein Binding/genetics , Transcriptional Regulator ERG/metabolism
7.
Cell ; 167(5): 1354-1368.e14, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863248

ABSTRACT

Innate immune memory is the phenomenon whereby innate immune cells such as monocytes or macrophages undergo functional reprogramming after exposure to microbial components such as lipopolysaccharide (LPS). We apply an integrated epigenomic approach to characterize the molecular events involved in LPS-induced tolerance in a time-dependent manner. Mechanistically, LPS-treated monocytes fail to accumulate active histone marks at promoter and enhancers of genes in the lipid metabolism and phagocytic pathways. Transcriptional inactivity in response to a second LPS exposure in tolerized macrophages is accompanied by failure to deposit active histone marks at promoters of tolerized genes. In contrast, ß-glucan partially reverses the LPS-induced tolerance in vitro. Importantly, ex vivo ß-glucan treatment of monocytes from volunteers with experimental endotoxemia re-instates their capacity for cytokine production. Tolerance is reversed at the level of distal element histone modification and transcriptional reactivation of otherwise unresponsive genes. VIDEO ABSTRACT.


Subject(s)
Immune Tolerance , Lipopolysaccharides/immunology , Macrophages/immunology , Monocytes/immunology , Sepsis/immunology , Transcription, Genetic , beta-Glucans/immunology , Cell Differentiation , DNA Methylation , Epigenomics , Gene Regulatory Networks , Histone Code , Humans , Immunity, Innate , Immunologic Memory , Macrophages/cytology , Monocytes/cytology , Sepsis/genetics
8.
Cell ; 167(5): 1415-1429.e19, 2016 11 17.
Article in English | MEDLINE | ID: mdl-27863252

ABSTRACT

Many common variants have been associated with hematological traits, but identification of causal genes and pathways has proven challenging. We performed a genome-wide association analysis in the UK Biobank and INTERVAL studies, testing 29.5 million genetic variants for association with 36 red cell, white cell, and platelet properties in 173,480 European-ancestry participants. This effort yielded hundreds of low frequency (<5%) and rare (<1%) variants with a strong impact on blood cell phenotypes. Our data highlight general properties of the allelic architecture of complex traits, including the proportion of the heritable component of each blood trait explained by the polygenic signal across different genome regulatory domains. Finally, through Mendelian randomization, we provide evidence of shared genetic pathways linking blood cell indices with complex pathologies, including autoimmune diseases, schizophrenia, and coronary heart disease and evidence suggesting previously reported population associations between blood cell indices and cardiovascular disease may be non-causal.


Subject(s)
Genetic Variation , Genome-Wide Association Study , Hematopoietic Stem Cells/metabolism , Immune System Diseases/genetics , Alleles , Cell Differentiation , Genetic Predisposition to Disease , Hematopoietic Stem Cells/pathology , Humans , Immune System Diseases/pathology , Polymorphism, Single Nucleotide , Quantitative Trait Loci , White People/genetics
9.
Genome Biol ; 16: 264, 2015 Dec 01.
Article in English | MEDLINE | ID: mdl-26619937

ABSTRACT

BACKGROUND: The impact of signal-dependent transcription factors, such as glucocorticoid receptor and nuclear factor kappa-b, on the three-dimensional organization of chromatin remains a topic of discussion. The possible scenarios range from remodeling of higher order chromatin architecture by activated transcription factors to recruitment of activated transcription factors to pre-established long-range interactions. RESULTS: Using circular chromosome conformation capture coupled with next generation sequencing and high-resolution chromatin interaction analysis by paired-end tag sequencing of P300, we observed agonist-induced changes in long-range chromatin interactions, and uncovered interconnected enhancer-enhancer hubs spanning up to one megabase. The vast majority of activated glucocorticoid receptor and nuclear factor kappa-b appeared to join pre-existing P300 enhancer hubs without affecting the chromatin conformation. In contrast, binding of the activated transcription factors to loci with their consensus response elements led to the increased formation of an active epigenetic state of enhancers and a significant increase in long-range interactions within pre-existing enhancer networks. De novo enhancers or ligand-responsive enhancer hubs preferentially interacted with ligand-induced genes. CONCLUSIONS: We demonstrate that, at a subset of genomic loci, ligand-mediated induction leads to active enhancer formation and an increase in long-range interactions, facilitating efficient regulation of target genes. Therefore, our data suggest an active role of signal-dependent transcription factors in chromatin and long-range interaction remodeling.


Subject(s)
Chromatin/chemistry , Enhancer Elements, Genetic , NF-kappa B/metabolism , Receptors, Glucocorticoid/metabolism , Binding Sites , Chromatin/metabolism , Gene Regulatory Networks , Ligands , p300-CBP Transcription Factors/metabolism
10.
Science ; 345(6204): 1251086, 2014 Sep 26.
Article in English | MEDLINE | ID: mdl-25258085

ABSTRACT

Monocyte differentiation into macrophages represents a cornerstone process for host defense. Concomitantly, immunological imprinting of either tolerance or trained immunity determines the functional fate of macrophages and susceptibility to secondary infections. We characterized the transcriptomes and epigenomes in four primary cell types: monocytes and in vitro-differentiated naïve, tolerized, and trained macrophages. Inflammatory and metabolic pathways were modulated in macrophages, including decreased inflammasome activation, and we identified pathways functionally implicated in trained immunity. ß-glucan training elicits an exclusive epigenetic signature, revealing a complex network of enhancers and promoters. Analysis of transcription factor motifs in deoxyribonuclease I hypersensitive sites at cell-type-specific epigenetic loci unveiled differentiation and treatment-specific repertoires. Altogether, we provide a resource to understand the epigenetic changes that underlie innate immunity in humans.


Subject(s)
Cell Differentiation/genetics , Epigenesis, Genetic , Immunity, Innate/genetics , Macrophages/cytology , Monocytes/cytology , Animals , Binding Sites/genetics , Deoxyribonuclease I/chemistry , Genomic Imprinting , Humans , Immunologic Memory , Inflammasomes/genetics , Inflammasomes/immunology , Macrophages/immunology , Mice , Monocytes/immunology , Transcription Factors/metabolism , beta-Glucans/immunology
11.
J Bacteriol ; 195(7): 1573-82, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23354753

ABSTRACT

Although carbon dioxide (CO2) is known to be essential for Streptococcus pneumoniae growth, it is poorly understood how this respiratory tract pathogen adapts to the large changes in environmental CO2 levels it encounters during transmission, host colonization, and disease. To identify the molecular mechanisms that facilitate pneumococcal growth under CO2-poor conditions, we generated a random S. pneumoniae R6 mariner transposon mutant library representing mutations in 1,538 different genes and exposed it to CO2-poor ambient air. With Tn-seq, we found mutations in two genes that were involved in S. pneumoniae adaptation to changes in CO2 availability. The gene pca, encoding pneumococcal carbonic anhydrase (PCA), was absolutely essential for S. pneumoniae growth under CO2-poor conditions. PCA catalyzes the reversible hydration of endogenous CO2 to bicarbonate (HCO3(-)) and was previously demonstrated to facilitate HCO3(-)-dependent fatty acid biosynthesis. The gene folC that encodes the dihydrofolate/folylpolyglutamate synthase was required at the initial phase of bacterial growth under CO2-poor culture conditions. FolC compensated for the growth-phase-dependent decrease in S. pneumoniae intracellular long-chain (n > 3) polyglutamyl folate levels, which was most pronounced under CO2-poor growth conditions. In conclusion, S. pneumoniae adaptation to changes in CO2 availability involves the retention of endogenous CO2 and the preservation of intracellular long-chain polyglutamyl folate pools.


Subject(s)
Carbon Dioxide/metabolism , Folic Acid/biosynthesis , Streptococcus pneumoniae/drug effects , Streptococcus pneumoniae/metabolism , Carbonic Anhydrases/genetics , Carbonic Anhydrases/metabolism , DNA Transposable Elements , Gene Knockout Techniques , Mutagenesis, Insertional , Peptide Synthases/genetics , Peptide Synthases/metabolism , Streptococcus pneumoniae/growth & development
12.
Environ Microbiol ; 15(5): 1275-89, 2013 May.
Article in English | MEDLINE | ID: mdl-22568606

ABSTRACT

Anaerobic ammonium-oxidizing (anammox) bacteria are responsible for a significant portion of the loss of fixed nitrogen from the oceans, making them important players in the global nitrogen cycle. To date, marine anammox bacteria found in marine water columns and sediments worldwide belong almost exclusively to the 'Candidatus Scalindua' species, but the molecular basis of their metabolism and competitive fitness is presently unknown. We applied community sequencing of a marine anammox enrichment culture dominated by 'Candidatus Scalindua profunda' to construct a genome assembly, which was subsequently used to analyse the most abundant gene transcripts and proteins. In the S. profunda assembly, 4756 genes were annotated, and only about half of them showed the highest identity to the only other anammox bacterium of which a metagenome assembly had been constructed so far, the freshwater 'Candidatus Kuenenia stuttgartiensis'. In total, 2016 genes of S. profunda could not be matched to the K. stuttgartiensis metagenome assembly at all, and a similar number of genes in K.stuttgartiensis could not be found in S. profunda. Most of these genes did not have a known function but 98 expressed genes could be attributed to oligopeptide transport, amino acid metabolism, use of organic acids and electron transport. On the basis of the S. profunda metagenome, and environmental metagenome data, we observed pronounced differences in the gene organization and expression of important anammox enzymes, such as hydrazine synthase (HzsAB), nitrite reductase (NirS) and inorganic nitrogen transport proteins. Adaptations of Scalindua to the substrate limitation of the ocean may include highly expressed ammonium, nitrite and oligopeptide transport systems and pathways for the transport, oxidation, and assimilation of small organic compounds that may allow a more versatile lifestyle contributing to the competitive fitness of Scalindua in the marine realm.


Subject(s)
Aquatic Organisms/genetics , Aquatic Organisms/metabolism , Genome, Bacterial , Metagenome , Nitrogen Cycle , Planctomycetales/genetics , Planctomycetales/metabolism , Aquatic Organisms/classification , Nitrite Reductases/metabolism , Oceans and Seas , Oxidation-Reduction , Planctomycetales/classification , Quaternary Ammonium Compounds/metabolism , RNA, Ribosomal, 16S/genetics , Water Microbiology
13.
Nature ; 479(7371): 127-30, 2011 Oct 02.
Article in English | MEDLINE | ID: mdl-21964329

ABSTRACT

Two distinct microbial processes, denitrification and anaerobic ammonium oxidation (anammox), are responsible for the release of fixed nitrogen as dinitrogen gas (N(2)) to the atmosphere. Denitrification has been studied for over 100 years and its intermediates and enzymes are well known. Even though anammox is a key biogeochemical process of equal importance, its molecular mechanism is unknown, but it was proposed to proceed through hydrazine (N(2)H(4)). Here we show that N(2)H(4) is produced from the anammox substrates ammonium and nitrite and that nitric oxide (NO) is the direct precursor of N(2)H(4). We resolved the genes and proteins central to anammox metabolism and purified the key enzymes that catalyse N(2)H(4) synthesis and its oxidation to N(2). These results present a new biochemical reaction forging an N-N bond and fill a lacuna in our understanding of the biochemical synthesis of the N(2) in the atmosphere. Furthermore, they reinforce the role of nitric oxide in the evolution of the nitrogen cycle.


Subject(s)
Anaerobiosis , Quaternary Ammonium Compounds/metabolism , Ammonia/metabolism , Atmosphere/chemistry , Bacteria, Anaerobic/metabolism , Biocatalysis , Hydrazines/metabolism , Nitrate Reductase/metabolism , Nitric Oxide/biosynthesis , Nitric Oxide/metabolism , Nitrites/metabolism , Nitrogen Cycle , Nitrogen Fixation , Oxidation-Reduction , Quaternary Ammonium Compounds/chemistry
14.
PLoS One ; 6(5): e19470, 2011 May 12.
Article in English | MEDLINE | ID: mdl-21589869

ABSTRACT

For self-renewal, embryonic stem cells (ESCs) require the expression of specific transcription factors accompanied by a particular chromosome organization to maintain a balance between pluripotency and the capacity for rapid differentiation. However, how transcriptional regulation is linked to chromosome organization in ESCs is not well understood. Here we show that the cohesin component RAD21 exhibits a functional role in maintaining ESC identity through association with the pluripotency transcriptional network. ChIP-seq analyses of RAD21 reveal an ESC specific cohesin binding pattern that is characterized by CTCF independent co-localization of cohesin with pluripotency related transcription factors Oct4, Nanog, Sox2, Esrrb and Klf4. Upon ESC differentiation, most of these binding sites disappear and instead new CTCF independent RAD21 binding sites emerge, which are enriched for binding sites of transcription factors implicated in early differentiation. Furthermore, knock-down of RAD21 causes expression changes that are similar to expression changes after Nanog depletion, demonstrating the functional relevance of the RAD21--pluripotency transcriptional network association. Finally, we show that Nanog physically interacts with the cohesin or cohesin interacting proteins STAG1 and WAPL further substantiating this association. Based on these findings we propose that a dynamic placement of cohesin by pluripotency transcription factors contributes to a chromosome organization supporting the ESC expression program.


Subject(s)
Embryonic Stem Cells/cytology , Nuclear Proteins/physiology , Phosphoproteins/physiology , Pluripotent Stem Cells/cytology , Transcription Factors/physiology , Animals , Binding Sites , Cell Cycle Proteins/physiology , Cells, Cultured , Chromatin Immunoprecipitation , Chromosomal Proteins, Non-Histone/physiology , DNA-Binding Proteins , Gene Expression Profiling , Homeodomain Proteins/physiology , Kruppel-Like Factor 4 , Mice , Nanog Homeobox Protein , Cohesins
15.
Nature ; 464(7288): 543-8, 2010 Mar 25.
Article in English | MEDLINE | ID: mdl-20336137

ABSTRACT

Only three biological pathways are known to produce oxygen: photosynthesis, chlorate respiration and the detoxification of reactive oxygen species. Here we present evidence for a fourth pathway, possibly of considerable geochemical and evolutionary importance. The pathway was discovered after metagenomic sequencing of an enrichment culture that couples anaerobic oxidation of methane with the reduction of nitrite to dinitrogen. The complete genome of the dominant bacterium, named 'Candidatus Methylomirabilis oxyfera', was assembled. This apparently anaerobic, denitrifying bacterium encoded, transcribed and expressed the well-established aerobic pathway for methane oxidation, whereas it lacked known genes for dinitrogen production. Subsequent isotopic labelling indicated that 'M. oxyfera' bypassed the denitrification intermediate nitrous oxide by the conversion of two nitric oxide molecules to dinitrogen and oxygen, which was used to oxidize methane. These results extend our understanding of hydrocarbon degradation under anoxic conditions and explain the biochemical mechanism of a poorly understood freshwater methane sink. Because nitrogen oxides were already present on early Earth, our finding opens up the possibility that oxygen was available to microbial metabolism before the evolution of oxygenic photosynthesis.


Subject(s)
Anaerobiosis , Bacteria/metabolism , Methane/metabolism , Nitrites/metabolism , Bacteria/classification , Bacteria/enzymology , Bacteria/genetics , Genome, Bacterial/genetics , Molecular Sequence Data , Oxidation-Reduction , Oxygen/metabolism , Oxygenases/genetics , Phylogeny , Soil Microbiology
16.
Dev Cell ; 17(3): 425-34, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19758566

ABSTRACT

Epigenetic mechanisms set apart the active and inactive regions in the genome of multicellular organisms to produce distinct cell fates during embryogenesis. Here, we report on the epigenetic and transcriptome genome-wide maps of gastrula-stage Xenopus tropicalis embryos using massive parallel sequencing of cDNA (RNA-seq) and DNA obtained by chromatin immunoprecipitation (ChIP-seq) of histone H3 K4 and K27 trimethylation and RNA Polymerase II (RNAPII). These maps identify promoters and transcribed regions. Strikingly, genomic regions featuring opposing histone modifications are mostly transcribed, reflecting spatially regulated expression rather than bivalency as determined by expression profile analyses, sequential ChIP, and ChIP-seq on dissected embryos. Spatial differences in H3K27me3 deposition are predictive of localized gene expression. Moreover, the appearance of H3K4me3 coincides with zygotic gene activation, whereas H3K27me3 is predominantly deposited upon subsequent spatial restriction or repression of transcriptional regulators. These results reveal a hierarchy in the spatial control of zygotic gene activation.


Subject(s)
Gene Expression Regulation, Developmental , Histones/metabolism , Animals , Epigenesis, Genetic , Gastrula/metabolism , Genome , Humans , Mice , Models, Biological , Models, Genetic , Nucleosomes/metabolism , Oligonucleotide Array Sequence Analysis , Time Factors , Xenopus/embryology , Xenopus laevis/embryology
17.
Proc Natl Acad Sci U S A ; 106(24): 9655-60, 2009 Jun 16.
Article in English | MEDLINE | ID: mdl-19497874

ABSTRACT

Epigenome profiling has led to the paradigm that promoters of active genes are decorated with H3K4me3 and H3K9ac marks. To explore the epigenome of Plasmodium falciparum asexual stages, we performed MS analysis of histone modifications and found a general preponderance of H3/H4 acetylation and H3K4me3. ChIP-on-chip profiling of H3, H3K4me3, H3K9me3, and H3K9ac from asynchronous parasites revealed an extensively euchromatic epigenome with heterochromatin restricted to variant surface antigen gene families (VSA) and a number of genes hitherto unlinked to VSA. Remarkably, the vast majority of the genome shows an unexpected pattern of enrichment of H3K4me3 and H3K9ac. Analysis of synchronized parasites revealed significant developmental stage specificity of the epigenome. In rings, H3K4me3 and H3K9ac are homogenous across the genes marking active and inactive genes equally, whereas in schizonts, they are enriched at the 5' end of active genes. This study reveals an unforeseen and unique plasticity in the use of the epigenetic marks and implies the presence of distinct epigenetic pathways in gene silencing/activation throughout the erythrocytic cycle.


Subject(s)
Erythrocytes/parasitology , Genome, Protozoan , Histones/genetics , Plasmodium falciparum/genetics , Animals , Chromatin Immunoprecipitation , Heterochromatin/metabolism , Histones/metabolism , Mass Spectrometry , Oligonucleotide Array Sequence Analysis , Plasmodium falciparum/physiology
18.
EMBO J ; 28(10): 1418-28, 2009 May 20.
Article in English | MEDLINE | ID: mdl-19339991

ABSTRACT

We used ChIP-Seq to map ERalpha-binding sites and to profile changes in RNA polymerase II (RNAPII) occupancy in MCF-7 cells in response to estradiol (E2), tamoxifen or fulvestrant. We identify 10 205 high confidence ERalpha-binding sites in response to E2 of which 68% contain an estrogen response element (ERE) and only 7% contain a FOXA1 motif. Remarkably, 596 genes change significantly in RNAPII occupancy (59% up and 41% down) already after 1 h of E2 exposure. Although promoter proximal enrichment of RNAPII (PPEP) occurs frequently in MCF-7 cells (17%), it is only observed on a minority of E2-regulated genes (4%). Tamoxifen and fulvestrant partially reduce ERalpha DNA binding and prevent RNAPII loading on the promoter and coding body on E2-upregulated genes. Both ligands act differently on E2-downregulated genes: tamoxifen acts as an agonist thus downregulating these genes, whereas fulvestrant antagonizes E2-induced repression and often increases RNAPII occupancy. Furthermore, our data identify genes preferentially regulated by tamoxifen but not by E2 or fulvestrant. Thus (partial) antagonist loaded ERalpha acts mechanistically different on E2-activated and E2-repressed genes.


Subject(s)
DNA/metabolism , Estrogen Receptor alpha/metabolism , Gene Expression Regulation/drug effects , RNA Polymerase II/metabolism , RNA, Messenger/biosynthesis , Selective Estrogen Receptor Modulators/pharmacology , Binding Sites , Cell Line , Chromatin Immunoprecipitation , Estradiol/analogs & derivatives , Estradiol/pharmacology , Fulvestrant , Humans , Protein Binding , Sequence Analysis, DNA , Tamoxifen/pharmacology
19.
Nucleic Acids Res ; 37(2): 322-35, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19042971

ABSTRACT

The tumor suppressor p53 contributes to the cellular fate after genotoxic insults, mainly through the regulation of target genes, thereby allowing e.g. repair mechanisms resulting in cell survival or inducing apoptosis. Unresolved so far is the issue, which exact mechanisms lead to one or the other cellular outcome. Here, we describe the interferon regulatory factor-2-binding protein-2 (IRF2BP2) as a new direct target gene of p53, influencing the p53-mediated cellular decision. We show that upregulation of IRF2BP2 after treatment with actinomycin D (Act.D) is dependent on functional p53 in different cell lines. This occurs in parallel with the down-regulation of the interacting partner of IRF2BP2, the interferon regulatory factor-2 (IRF2), which is known to positively influence cell growth. Analyzing the molecular functions of IRF2BP2, it appears to be able to impede on the p53-mediated transactivation of the p21- and the Bax-gene. We show here that overexpressed IRF2BP2 has an impact on the cellular stress response after Act.D treatment and that it diminishes the induction of apoptosis after doxorubicin treatment. Furthermore, the knockdown of IRF2BP2 leads to an upregulation of p21 and faster induction of apoptosis after doxorubicin as well as Act.D treatment.


Subject(s)
Carrier Proteins/metabolism , Nuclear Proteins/metabolism , Transcriptional Activation , Tumor Suppressor Protein p53/metabolism , Antibiotics, Antineoplastic/pharmacology , Apoptosis , Binding Sites , Carrier Proteins/antagonists & inhibitors , Carrier Proteins/genetics , Cell Line , Cell Line, Tumor , Cell Survival , DNA-Binding Proteins , Dactinomycin/pharmacology , Dactinomycin/toxicity , Doxorubicin/pharmacology , Humans , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/genetics , Transcription Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...